7-1求平方与倒数序列的部分和
本题要求对两个正整数m和n(m≤n)编写程序,计算序列和m2+1/m+(m+1)2+1/(m+1)+⋯+n2+1/n。
输入格式:
输入在一行中给出两个正整数m和n(m≤n),其间以空格分开。
输出格式:
在一行中按照“sum = S”的格式输出部分和的值S,精确到小数点后六位。题目保证计算结果不超过双精度范围。
输入样例:
5 10
输出样例:
sum = 355.845635
#include<stdio.h>
int main()
{
int m=0;
int n=0;
double sum=0;
scanf("%d %d",&m,&n);
int i=0;
for(i=m;i<=n;i++)
{
sum=sum+i*i+1/(double)i;
}
printf("sum = %.6lf",sum);
return 0;
}
7-2 输出整数各位数字
本题要求编写程序,对输入的一个整数,从高位开始逐位分割并输出它的各位数字。
输入格式:
输入在一行中给出一个长整型范围内的非负整数。
输出格式:
从高位开始逐位输出该整数的各位数字,每个数字后面有一个空格。
输入样例:
123456
输出样例:
1 2 3 4 5 6
#include<stdio.h>
int main()
{
long a=0;
scanf("%ld",&a);
long count =1;
long b=a;
while((b/10)!=0)
{
b/=10;
count*=10;
}
while(count!=0)
{
printf("%ld ",a/count);
a%=count;
count/=10;
}
return 0;
}
7-3 求e的近似值
自然常数 e 可以用级数 1+1/1!+1/2!+⋯+1/n!+⋯ 来近似计算。本题要求对给定的非负整数 n,求该级数的前 n+1 项和。
输入格式:
输入第一行中给出非负整数 n(≤1000)。
输出格式:
在一行中输出部分和的值,保留小数点后八位。
输入样例:
10
输出样例:
2.71828180
#include<stdio.h>
int main()
{ int n,i; double b=1,sum=0;
scanf("%d",&n);
for(i=1;i<=n;i++)
{ b*=i;
sum+=1.0/b;
}
printf("%.8lf",sum+1);
return 0;
}
7-4 高空坠球
皮球从某给定高度自由落下,触地后反弹到原高度的一半,再落下,再反弹,……,如此反复。问皮球在第n次落地时,在空中一共经过多少距离?第n次反弹的高度是多少?
输入格式:
输入在一行中给出两个非负整数,分别是皮球的初始高度和n,均在长整型范围内。
输出格式:
在一行中顺序输出皮球第n次落地时在空中经过的距离、以及第n次反弹的高度,其间以一个空格分隔,保留一位小数。题目保证计算结果不超过双精度范围。
输入样例:
33 5
输出样例:
94.9 1.0
#include<stdio.h>
#include<math.h>
int main()
{
int i,h,n;
float s=0.0,z=0.0,k=2.0;
scanf("%d %d",&h,&n);
if(n>0) {
s=h;
for(i=1;i<=n;i++){
s=s+2.0*z;
z=h/k;
k=k*2;
}
}
printf("%0.1f %0.1f",s,z);
return 0;
}
7-5 人民币兑换
1元5角钱人民币兑换5分、2分和1分的硬币(每一种都要有)共100枚,会有很多种兑换方案。请编写程序给出各种兑换方案。
输入格式:
输入为一个正整数n,表示要求输出前n种可能的方案。方案的顺序,是按照5分硬币从少到多排列的。
输出格式:
显示前n种方案中5分、2分、1分硬币各多少枚。每行显示一种方案,数字之间空一格,最后一个数字后没有空格。
注意:如果全部方案不到n种,就顺序输出全部可能的方案。
输入样例:
5
输出样例:
1 46 53
2 42 56
3 38 59
4 34 62
5 30 65
#include<stdio.h>
int main()
{
int n=0;
scanf("%d",&n);
int i,j,k;
int count=0;
for(i=1;i<100;i++)
{
for(j=1;j<100;j++)
{
for(k=1;k<100;k++)
{
if(i+j+k == 100 && i*5+2*j+k == 150)
{
count++;
if(count<n)
{
printf("%d %d %d\n",i,j,k);
}
if(count == n)
printf("%d %d %d",i,j,k);
}
}
}
}
return 0;
}
7-6 求整数的位数及各位数字之和
对于给定的正整数N,求它的位数及其各位数字之和。
输入格式:
输入在一行中给出一个不超过109的正整数N。
输出格式:
在一行中输出N的位数及其各位数字之和,中间用一个空格隔开。
输入样例:
321
输出样例:
3 6
#include<stdio.h>
int main()
{
int n=0;
scanf("%d",&n);
int count=0;
int sum=0;
while(n!=0)
{
sum+=n%10;
count++;
n/=10;
}
printf("%d %d",count,sum);
return 0;
}
7-7 打印菱形图案
本题要求编写程序,打印一个高度为n的、由“*”组成的正菱形图案。
输入格式:
输入在一行中给出一个正的奇数n。
输出格式:
输出由n行星号“*”组成的菱形,如样例所示。每个星号后跟一个空格。
输入样例:
7
输出样例:
*
* * *
* * * * *
* * * * * * *
* * * * *
* * *
*
#include<stdio.h>
int main()
{
int n=0;
scanf("%d",&n);
if(n%2!=0)
{
for(int i=1;i<=n/2+1;i++)
{
for(int j=1;j<=(n+1)/2-i;j++)
{
printf(" ");
}
for(int m=1;m<=2*i-1;m++)
{
printf("* ");
}
printf("\n");
}
for(int l=1;l<=n/2;l++)
{
for(int z=1;z<=l;z++)
{
printf(" ");
}
for(int k=1;k<=n-2*l;k++){
printf("* ");
}
printf("\n");
}
}
return 0;
}
7-8 找完数
所谓完数就是该数恰好等于除自身外的因子之和。例如:6=1+2+3,其中1、2、3为6的因子。本题要求编写程序,找出任意两正整数m和n之间的所有完数。
输入格式:
输入在一行中给出2个正整数m和n(1<m≤n≤10000),中间以空格分隔。
输出格式:
逐行输出给定范围内每个完数的因子累加形式的分解式,每个完数占一行,格式为“完数 = 因子1 + 因子2 + ... + 因子k”,其中完数和因子均按递增顺序给出。若区间内没有完数,则输出“None”。
输入样例:
2 30
输出样例:
6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14
#include <stdio.h>
int main()
{
int i, m, n;
scanf("%d %d", &m, &n);
int count = 0;
for (i = m; i <= n; i++)
{
int sum = 0, a, b;
for (a = 1; a < i; a++)
{
b = i % a;
if (b == 0)
sum = sum + a;
}
if (sum == i) {
printf("%d = 1", sum);
int c, d;
for (c = 2; c < i; c++)
{
d = i % c;
if (d == 0)
printf(" + %d", c);
}
printf("\n"); count = count + 1;
}
}
if (count == 0)
printf("None");
}
7-9 求整数段和
给定两个整数A和B,输出从A到B的所有整数以及这些数的和。
输入格式:
输入在一行中给出2个整数A和B,其中−100≤A≤B≤100,其间以空格分隔。
输出格式:
首先顺序输出从A到B的所有整数,每5个数字占一行,每个数字占5个字符宽度,向右对齐。最后在一行中按Sum = X
的格式输出全部数字的和X
。
输入样例:
-3 8
输出样例:
-3 -2 -1 0 1
2 3 4 5 6
7 8
Sum = 30
#include<stdio.h>
int main()
{
int a=0;
int b=0;
int x=0;
int Sum=0;
scanf("%d %d",&a,&b);
for(int i=a;i<=b;i++)
{
printf("%5d",i);
x++;
if(x%5==0&&i!=b)
{
printf("\n");
}
Sum+=i;
}
printf("\n");
printf("Sum = %d",Sum);
return 0;
}
7-10 验证“哥德巴赫猜想”
数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。
输入格式:
输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。
输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。
输入样例:
24
输出样例:
24 = 5 + 19
#include<stdio.h>
#include<math.h>
int sushu(int n)
{
int i;
int k;
int a;
k=(int)sqrt( (double)n);//强制类型转换
for(i=2;i<=k;i++)
if(n%i==0)
break;
// 如果完成所有循环,那么m为素数
// 注意最后一次循环,会执行i++,此时 i=k+1,所以有i>k
if(i>k)
a=1;
else
a=0;
return a;
}
//函数的作用是判断素数
int main()
{
int n, i;
scanf( "%d", &n );
for( i = 2; i <= n / 2; i++ )
{
if( sushu( i ) && sushu( n - i ) )//判断两个相加的数是不是同时为素数
{
printf( "%d = %d + %d\n", n, i, n - i );
break;
}
}
return 0;
}