知识点
二叉树的基本操作
删除某节点有3种情况:
如果节点是一片树叶,那么可以立即被删除。
如果节点只有一个儿子,则将此节点parent的指针指向此节点的儿子,然后删除。
如果节点有两个儿子,则将其右子树的最小数据代替此节点的数据,并将其右子树的最小数据(不可能有左儿子,只有一个右儿子)删除。
class BinarySearchTree(object):
def __init__(self,key):
self.key=key
self.left=None
self.right=None
def find(self,x):
if x==self.key:
return self
elif x<self.key and self.left:
return self.left.find(x)
elif x>self.key and self.right:
return self.right.find(x)
else:
return None
def findMin(self):
if self.left:
return self.left.findMin()
else:
return self
def insert(self,x):
if x<self.key:
if self.left:
self.left.insert(x)
else:
tree=BinarySearchTree(x)
self.left=tree
elif x>self.key:
if self.right:
self.right.insert(x)
else:
tree=BinarySearchTree(x)
self.right=tree
def delete(self,x):
if self.find(x):
if x<self.key:
self.left=self.left.delete(x)
return self
elif x>self.key:
self.right=self.right.delete(x)
return self
elif self.left and self.right:
key=self.right.findMin().key
self.key=key
self.right=self.right.delete(key)
return self
else:
if self.left:
return self.left
else:
return self.right
else:
return self
重建二叉树
题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
#class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# 返回构造的TreeNode根节点
def reConstructBinaryTree(self, pre, tin):
# write code here
if not pre or not tin:
return None
root=TreeNode(pre[0])
#rootval=pre[0]
p = self.find(pre[0],tin)
if p!=None:
root.left = self.reConstructBinaryTree(pre[1:p+1],tin[0:p])
root.right = self.reConstructBinaryTree(pre[p+1:],tin[p+1:])
return root
def find(self,val,tin):
for j in range(len(tin)):
if tin[j]==val:
return j
return None
先序遍历:根左右
中序遍历:左根右
后序遍历:左右根