题目描述
【问题描述】
经过 11 年的韬光养晦,某国研发出了一种新的导弹拦截系统,凡是与它的距离不超过 其工作半径的导弹都能够被它成功拦截。当工作半径为 0 时,则能够拦截与它位置恰好相同 的导弹。但该导弹拦截系统也存在这样的缺陷: 每套系统每天只能设定一次工作半径。而当天的使用代价,就是所有系统工作半径的平方和。
某天, 雷达捕捉到敌国的导弹来袭。由于该系统尚处于试验阶段, 所以只有两套系统投 入工作。如果现在的要求是拦截所有的导弹,请计算这一天的最小使用代价。
【输入】
输入文件名 missile.in。
第一行包含 4 个整数 x1 、y1 、x2 、y2 ,每两个整数之间用一个空格隔开, 表示这两套导 弹拦截系统的坐标分别为(x1, y1) 、(x2, y2)。
第二行包含 1 个整数 N,表示有 N 颗导弹。接下来 N 行, 每行两个整数 x 、y,中间用 一个空格隔开,表示一颗导弹的坐标(x, y)。不同导弹的坐标可能相同。
【输出】
输出文件名 missile.out。
输出只有一行,包含一个整数,即当天的最小使用代价。
【提示】
两个点(x1, y1) 、(x2, y2)之间距离的平方是(x1- x2)2+(y1-y2)2。
两套系统工作半径 r1 、r2 的平方和,是指 r1 、r2 分别取平方后再求和,即 r12+r22。
【输入输出样例 1】
missile.in | missile.out |
0 0 10 0 2 -3 3 10 0 | 18 |
【样例 1 说明】
样例 1 中要拦截所有导弹, 在满足最小使用代价的前提下, 两套系统工作半径的平方分 别为 18 和 0。
【输入输出样例 2】
missile.in | missile.out |
0 0 6 0 5 -4 -2 -2 3 4 0 6 -2 9 1 | 30 |
【样例 2 说明】
样例中的导弹拦截系统和导弹所在的位置如下图所示。要拦截所有导弹, 在满足最小使 用代价的前提下,两套系统工作半径的平方分别为 20 和 10。
【数据范围】
对于 10%的数据, N = 1
对于 20%的数据, 1 ≤ N ≤ 2
对于 40%的数据, 1 ≤ N ≤ 100
对于 70%的数据, 1 ≤ N ≤ 1000
对于 100%的数据, 1 ≤ N ≤ 100000,且所有坐标分量的绝对值都不超过 1000。
代码
#include<bits/stdc++.h>
using namespace std;
inline int dist(int x1,int y1,int x2,int y2){return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);}
//计算两点距离的函数
struct Jack{
int l1,l2;
}f[110000];
inline bool cmp(const Jack &a,const Jack &b){return a.l1<b.l1;}
//相对于一号系统进行排序,将大的放到后面去
int main( ){
int n,i,j,k,x1,x2,y1,y2,a,b;
std::ios::sync_with_stdio(false);
cin>>x1>>y1>>x2>>y2;
cin>>n;
for(i=1;i<=n;i++){
cin>>a>>b;
f[i].l1=dist(x1,y1,a,b);
f[i].l2=dist(x2,y2,a,b);
}
sort(f+1,f+n+1,cmp);
int ans=f[n].l1,hei=-1;
//因为将一号系统设置为离它最远的一个便已经能拦截所有导弹了
for(i=n-1;i>=1;i--){
hei=max(hei,f[i+1].l2);
ans=min(ans,hei+f[i].l1);
}
cout<<ans<<endl;
}