从零开始学习机器学习视频教程—1322人已学习
课程介绍
零基础入门机器学习视频培训课程概况:机器学习数学基础、Python基础、机器学习算法(线性回归、逻辑回归、聚类算法、EM算法),机器学习项目实战(Kmeans篮球数据分析、贝叶斯算法训练)、推荐算法、项目实战。
课程收益
从零开始快速入门和深入机器学习的全部知识
系统全面的了解机器学习的内容
数学基础、Python基础、机器学习算法、推荐算法、项目实战
讲师介绍
陆永剑 更多讲师课程
曾就职国内大型的上市软件公司并担任技术骨干及项目经理职务,机器学习、深度学习培训讲师。精通机器学习、深度学习领域等多方面技术。喜欢研究机器学习方向和深度学习的各种开源技术和算法。用简约的方式去讲授晦涩难懂的知识。同时关注学员们在学习中遇到的问题,不断改进授课方式。目标是让学员们更快更简单的入门。
课程大纲
第1章:概述
1. 课程概述(必看) 1:44
第2章:数学基础
1. 矩阵及矩阵的基本表示 9:01
2. 矩阵基本运算 9:16
3. 几种特殊矩阵 18:58
4. 向量及向量的基本运算 4:40
5. 矩阵特征值特征向量的计算 17:38
6. 奇异值分解 16:57
7. 贝叶斯公式 14:03
8. 几种特殊矩阵(旧) 18:58
第3章:Python基础
1. Python怎么学? 6:22
2. Anaconda正确的使用姿势 11:30
3. notebook基本使用 6:10
4. python输入输出 4:44
5. python数据类型 14:29
6. python条件判断 4:08
7. python循环结构 13:06
8. python-dict 4:53
9. python-set 2:45
10. python内置函数 3:56
11. python自定义函数 6:39
12. python切片 3:55
13. python第三方模块导入 4:47
14. numpy之矩阵的创建 11:55
15. numpy之读取文件内容 9:29
16. numpy之数据处理 8:04
17. numpy之与和或的用法 3:55
18. numpy之矩阵的属性 9:43
19. numpy之矩阵加减乘操作 12:07
20. numpy之矩阵其他操作(新) 12:41
21. numpy之特征值分解(新) 3:28
22. pandas之pandas的用处 2:37
23. pandas之读取文件 7:21
24. pandas之数据属性 5:42
25. pandas之数据基本操作 6:29
26. pandas之空值及分组处理 6:54
27. Matplot之基本框绘制 6:11
28. matplot之折线图优化 5:39
29. matplot之区域画多图 3:56
30. matplot之其他操作 4:43
第4章:算法
1. 线性回归数学推导-矩阵转换 11:35
2. 线性回归数学推导-误差项分析 7:59
3. 线性回归数学推导-极大似然估计 6:03
4. 线性回归数学推导-最小二乘 6:06
5. 梯度下降前提及步骤(新) 10:26
6. 梯度下降求解步骤 7:32
7. 逻辑回归-Sigmoid函数 3:59
8. 逻辑回归 5:04
9. 聚类算法 2:44
10. 聚类算法之kmeans 10:38
11. 聚类算法之kmeans可视化演示(新) 10:59
12. (废弃)聚类算法之kmeans可视化演示 4:01
13. 聚类算法之DBSCAN讲解 10:41
14. 聚类算法之DBSCAN可视化演示 8:34
15. 决策树算法概述 6:36
16. 决策树算法熵值计算 14:58
17. 决策树三种节点顺序衡量标准 6:55
18. 决策树剪枝策略 8:25
19. 集成算法之Bagging 9:54
20. 集成算法之Boosting 8:45
21. EM算法思想 9:46
22. EM算法之Jensen不等式 11:25
23. EM算法数学推导 14:40
24. 老师正在拼命录制中...... 0:08
第5章:项目实战
1. Kmeans数据准备 6:07
2. Kmeans篮球数据分类 7:23
3. 贝叶斯数据准备 6:22
4. 贝叶斯分类的思路整理 6:00
5. 贝叶斯算法训练 13:23
6. 老师正在拼命录制中...... 0:08
第6章:同学们的新需求
1. 结束语 0:41
2. 老师正在拼命录制中...... 0:08
大家可以点击【 查看详情】查看我的课程
课程介绍
零基础入门机器学习视频培训课程概况:机器学习数学基础、Python基础、机器学习算法(线性回归、逻辑回归、聚类算法、EM算法),机器学习项目实战(Kmeans篮球数据分析、贝叶斯算法训练)、推荐算法、项目实战。
课程收益
从零开始快速入门和深入机器学习的全部知识
系统全面的了解机器学习的内容
数学基础、Python基础、机器学习算法、推荐算法、项目实战
讲师介绍
陆永剑 更多讲师课程
曾就职国内大型的上市软件公司并担任技术骨干及项目经理职务,机器学习、深度学习培训讲师。精通机器学习、深度学习领域等多方面技术。喜欢研究机器学习方向和深度学习的各种开源技术和算法。用简约的方式去讲授晦涩难懂的知识。同时关注学员们在学习中遇到的问题,不断改进授课方式。目标是让学员们更快更简单的入门。
课程大纲
第1章:概述
1. 课程概述(必看) 1:44
第2章:数学基础
1. 矩阵及矩阵的基本表示 9:01
2. 矩阵基本运算 9:16
3. 几种特殊矩阵 18:58
4. 向量及向量的基本运算 4:40
5. 矩阵特征值特征向量的计算 17:38
6. 奇异值分解 16:57
7. 贝叶斯公式 14:03
8. 几种特殊矩阵(旧) 18:58
第3章:Python基础
1. Python怎么学? 6:22
2. Anaconda正确的使用姿势 11:30
3. notebook基本使用 6:10
4. python输入输出 4:44
5. python数据类型 14:29
6. python条件判断 4:08
7. python循环结构 13:06
8. python-dict 4:53
9. python-set 2:45
10. python内置函数 3:56
11. python自定义函数 6:39
12. python切片 3:55
13. python第三方模块导入 4:47
14. numpy之矩阵的创建 11:55
15. numpy之读取文件内容 9:29
16. numpy之数据处理 8:04
17. numpy之与和或的用法 3:55
18. numpy之矩阵的属性 9:43
19. numpy之矩阵加减乘操作 12:07
20. numpy之矩阵其他操作(新) 12:41
21. numpy之特征值分解(新) 3:28
22. pandas之pandas的用处 2:37
23. pandas之读取文件 7:21
24. pandas之数据属性 5:42
25. pandas之数据基本操作 6:29
26. pandas之空值及分组处理 6:54
27. Matplot之基本框绘制 6:11
28. matplot之折线图优化 5:39
29. matplot之区域画多图 3:56
30. matplot之其他操作 4:43
第4章:算法
1. 线性回归数学推导-矩阵转换 11:35
2. 线性回归数学推导-误差项分析 7:59
3. 线性回归数学推导-极大似然估计 6:03
4. 线性回归数学推导-最小二乘 6:06
5. 梯度下降前提及步骤(新) 10:26
6. 梯度下降求解步骤 7:32
7. 逻辑回归-Sigmoid函数 3:59
8. 逻辑回归 5:04
9. 聚类算法 2:44
10. 聚类算法之kmeans 10:38
11. 聚类算法之kmeans可视化演示(新) 10:59
12. (废弃)聚类算法之kmeans可视化演示 4:01
13. 聚类算法之DBSCAN讲解 10:41
14. 聚类算法之DBSCAN可视化演示 8:34
15. 决策树算法概述 6:36
16. 决策树算法熵值计算 14:58
17. 决策树三种节点顺序衡量标准 6:55
18. 决策树剪枝策略 8:25
19. 集成算法之Bagging 9:54
20. 集成算法之Boosting 8:45
21. EM算法思想 9:46
22. EM算法之Jensen不等式 11:25
23. EM算法数学推导 14:40
24. 老师正在拼命录制中...... 0:08
第5章:项目实战
1. Kmeans数据准备 6:07
2. Kmeans篮球数据分类 7:23
3. 贝叶斯数据准备 6:22
4. 贝叶斯分类的思路整理 6:00
5. 贝叶斯算法训练 13:23
6. 老师正在拼命录制中...... 0:08
第6章:同学们的新需求
1. 结束语 0:41
2. 老师正在拼命录制中...... 0:08
大家可以点击【 查看详情】查看我的课程