BP神经网络(python)

import math
import random


def rand(a, b):
	return (b - a) * random.random() + a

def make_matrix(m, n, fill=0.0):  # 创造一个指定大小的矩阵
    mat = []
    for i in range(m):
        mat.append([fill] * n)
    return mat


def sigmoid(x):
    return 1.0 / (1.0 + math.exp(-x))

def sigmod_derivate(x):
    return x * (1 - x)



class BPnet(object):

    def setup(self, ni, nh, no):
        self.input_n = ni + 1  # 因为需要多加一个偏置神经元,提供一个可控的输入修正
        self.hidden_n = nh
        self.output_n = no
        # 初始化神经元
        self.input_cells = self.input_n * [1.0]
        self.hidden_cells = self.hidden_n * [1.0]
        self.output_cells = self.output_n * [1.0]
        # 初始化权重矩阵
        self.input_weights = make_matrix(self.input_n, self.hidden_n)
        self.output_weights = make_matrix(self.hidden_n, self.output_n)
        # 权重矩阵随机激活
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                self.input_weights[i][h] = rand(-0.2, 0.2)

        for h in range(self.hidden_n):
            for o in range(self.output_n):
                self.output_weights[h][o] = rand(-0.2, 0.2)

        # 初始化矫正矩阵
        self.input_correction = make_matrix(self.input_n, self.hidden_n)
        self.output_correction = make_matrix(self.hidden_n, self.output_n)


    def predict(self, inputs):
        # 激活输入层
        for i in range(self.input_n - 1):
            self.input_cells[i] = inputs[i]
        # 激活隐藏层
        for j in range(self.hidden_n):
            total = 0.0
            for i in range(self.input_n):
                total += self.input_cells[i] * self.input_weights[i][j]
            self.hidden_cells[j] = sigmoid(total)
        for k in range(self.output_n):
            total = 0.0
            for j in range(self.hidden_n):
                total += self.hidden_cells[j] * self.output_weights[j][k]
            self.output_cells[k] = sigmoid(total)
        return self.output_cells[:]

    def back_propagate(self, case, label, learn, correct):
        # 前馈
        self.predict(case)
        # 获取输出层误差
        output_deltas = [0.0] * self.output_n
        for o in range(self.output_n):
            error = label[o] - self.output_cells[o]
            output_deltas[o] = sigmod_derivate(self.output_cells[o]) * error
        # 获取隐藏层误差
        hidden_deltas = [0.0] * self.hidden_n
        for h in range(self.hidden_n):
            error = 0.0
            for o in range(self.output_n):
                error += output_deltas[o] * self.output_weights[h][o]
            hidden_deltas[h] = sigmod_derivate(self.hidden_cells[h]) * error
        # 更新输出权重
        for h in range(self.hidden_n):
            for o in range(self.output_n):
                # Wij=Wij+λEjOi+μCij
                change = output_deltas[o] * self.hidden_cells[h]
                self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
        # 更新输入权重
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                # Wij=Wij+λEjOi+μCij
                change = hidden_deltas[h] * self.input_cells[i]
                self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
                self.input_correction[i][h] = change

        # 获取全局误差
        error = 0.0
        for o in range(len(label)):
            error += 0.5 * (label[o] - self.output_cells[o]) ** 2
        return error

    def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
        for i in range(limit):
            # if i % 1000 == 0:
            #     print("iterator: " + str(i))
            #     print(self.output_weights)
            error = 0.0
            for i in range(len(cases)):
                label = labels[i]
                case = cases[i]
                error += self.back_propagate(case, label, learn, correct)


    def test(self):
        cases = [
            [0, 0],
        [0, 1],
        [1, 0],
        [1, 1],
        ]
        labels = [[0], [1], [1], [1]]
        self.setup(2, 2, 1)  # 设置各层的神经元数量
        self.train(cases, labels, 10000, 0.5, 0.1)
        for case in cases:
            print(self.predict(case))


if __name__ == '__main__':
    net = BPnet()
    net.setup(2, 2, 1)

    cases = [
        [0, 0],
        [0, 1],
        [1, 0],
        [1, 1],
    ]
    labels = [[0], [1], [1], [1]]
    for iter in range(100000):
        for index in range(len(cases)):
            case = cases[index]
            predict = net.predict(case)
            backward = net.back_propagate(case, labels[index], 0.5, 0.1)
            if iter==0:
                print(predict)


    print(net.predict([0,0]))
    print(net.predict([0, 1]))
    print(net.predict([1, 0]))
    print(net.predict([1, 1]))

    net.test()







训练十万次的结果 

### 回答1: BP神经网络是一种常见的人工神经网络,用于解决回归和分类问题。在Python中,可以使用许多库来实现BP神经网络,如TensorFlow、Keras、PyTorch、Scikit-learn等。下面是一个使用Scikit-learn库实现BP神经网络的示例代码: ```python from sklearn.neural_network import MLPClassifier # 准备训练数据和标签 X_train = [[0, 0], [0, 1], [1, 0], [1, 1]] y_train = [0, 1, 1, 0] # 创建BP神经网络分类器 clf = MLPClassifier(hidden_layer_sizes=(4,), activation='logistic', solver='sgd', max_iter=1000) # 训练模型 clf.fit(X_train, y_train) # 预测新数据 X_test = [[0, 0], [0, 1], [1, 0], [1, 1]] y_pred = clf.predict(X_test) # 打印预测结果 print(y_pred) ``` 上面的代码使用Scikit-learn库中的`MLPClassifier`类创建了一个BP神经网络分类器,使用逻辑函数作为激活函数,使用随机梯度下降算法作为优化器,最多迭代1000次。然后,使用训练数据训练模型,并预测新的数据。最后,打印预测结果。 ### 回答2: BP神经网络是一种常用的人工神经网络模型,用于解决分类、回归和预测问题。BP即反向传播算法,它能够通过计算输出值与实际值之间的误差,并反向传播该误差来调整神经网络的权重和偏置值,从而提高网络的准确性。 在Python中,可以使用多种库来实现BP神经网络,如TensorFlow、PyTorch、Keras等。以下是一个使用Keras库实现BP神经网络的示例: 首先,安装Keras库:pip install keras 然后,导入相应的库和模块: ```python import numpy as np from keras.models import Sequential from keras.layers import Dense ``` 接下来,定义输入和输出数据集: ```python # 输入数据 X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) # 输出数据 y_train = np.array([[0], [1], [1], [0]]) ``` 然后,构建BP神经网络的模型: ```python # 创建模型 model = Sequential() # 添加输入层和隐藏层 model.add(Dense(units=4, input_dim=2, activation='relu')) # 添加输出层 model.add(Dense(units=1, activation='sigmoid')) # 编译模型 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 最后,训练模型并进行预测: ```python # 训练模型 model.fit(X_train, y_train, epochs=1000, verbose=0) # 预测结果 result = model.predict(X_train) print(result) ``` 通过以上代码,我们可以利用BP神经网络进行分类和预测任务。 总结起来,BP神经网络是一种常用的人工神经网络模型,通过反向传播算法来调整权重和偏置值,从而提高网络的准确性。在Python中,可以使用多种库来实现BP神经网络,如Keras等。 ### 回答3: BP神经网络是一种常用的人工神经网络模型,也被称为多层感知机。它在许多机器学习任务中具有广泛的应用,如分类、回归和聚类等。Python是一种高级编程语言,广泛应用于数据科学和机器学习领域。接下来,我将简要介绍一下如何使用Python实现BP神经网络。 首先,我们需要通过导入必要的库来创建和训练BP神经网络模型。常用的库包括NumPy、SciPy和pandas等。使用NumPy库可以方便地进行矩阵运算,SciPy库可以提供一些优化算法,pandas库则可以用来处理数据。 接下来,我们需要准备输入和输出数据集,以便训练模型。可以从文件中读取数据,或使用pandas库从数据库中获取数据。 然后,我们需要定义神经网络的结构。BP神经网络通常由输入层、隐藏层和输出层组成。输入层和输出层节点的数量由数据集的特征和标签确定,隐藏层的节点数量可以根据实际需求进行调整。 接下来,我们需要初始化神经网络的权重和偏置。可以使用随机数来初始化权重和偏置,也可以使用其他初始化方法。 然后,我们需要定义激活函数。常用的激活函数有sigmoid、ReLU和tanh等。激活函数可以使神经网络具有非线性能力。 接下来,我们可以进行神经网络的前向传播和误差计算。首先,我们将输入数据传递给输入层,然后将数据通过隐藏层传递到输出层。最后,我们可以计算输出层的误差。 然后,我们需要根据误差来调整神经网络的权重和偏置。这可以使用反向传播算法来实现。反向传播算法通过链式法则来计算权重和偏置的梯度,并使用优化算法来更新它们。 最后,我们可以使用训练好的神经网络来进行预测。将输入数据传递给神经网络,并获得输出结果。 总结起来,使用Python实现BP神经网络可以通过导入必要的库、准备数据集、定义网络结构、初始化权重和偏置、定义激活函数、进行前向传播和误差计算、使用反向传播算法调整权重和偏置,最后使用训练好的模型进行预测。这样可以实现一个基本的BP神经网络模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值