生成式大模型(Large Generative Models)是指具有大量参数的人工智能模型,它们能够生成新的内容,如文本、图片、音乐等。这类模型通常基于深度学习技术,尤其是神经网络,能够捕捉到数据的复杂分布,并据此生成高质量、多样化和创新的内容。
生成式大模型的特点主要包括:
1. 参数规模:模型拥有数亿甚至千亿级别的参数,这使得模型能够处理和理解极其复杂的模式和结构。
2. 数据多样性:能够处理和生成多种类型的数据,如文本、图像、音频等。
3. 生成能力:模型不仅能够识别和分类数据,还能创造全新的数据实例。
4. 上下文理解:在生成内容时,模型能够理解和延续给定的上下文信息。
大模型与生成式大模型的区别:
大模型(Large Models):
定义:通常指的是参数规模巨大的模型,它们可以用于各种任务,包括但不限于语言理解、图像识别、语音识别等。
功能:大模型主要用于预测、分类、回归等任务,它们的核心在于处理和理解输入数据,而不是生成新的数据。
应用:例如,大型语言模型可以用于机器翻译、情感分析等,而大型图像模型可以用于物体检测、图像分类等。
生成式大模型(Generative Large Models):
定义:这类模型不仅规模巨大,而且专门设计用于生成新的内容。
功能:除了可以执行一般大模型所能执行的任务外,生成式大模型还能创建全新的、原创的数据实例。
应用:例如,生成式语言模型可以创作文章、诗歌,生成式图像模型可以创作艺术作品、设计图案等。
简而言之,所有生成式大模型都是大模型,但不是所有大模型都是生成式的。生成式大模型特别强调其生成新内容的能力。
近期想学习生成式AI大模型技术的大佬们可参加:
《新质技术之第十期生成式AI、大模型、多模态技术开发与应用研修班》
2025年2月27日 — 2025年3月3日 在北京举办(同时转线上直播)
(第一天报到发放上课材料,授课四天)