剑指offer-连续子数组的最大和-java

138 篇文章 0 订阅
132 篇文章 0 订阅

题目描述:

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)

思路解析

  • 暴力解法:直接用两个变量来表示子数组的头和尾,这样头是从0到n-1,尾是从i到n-1的,然后累加求和,找到最大
  • 动态规划:max(array[i])=getMax(max(array[i-1])+array[i],array[i]).时间复杂度为O(n)

代码

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        if(array==null||array.length==0){
            return 0;
        }
        int n=array.length;
        int sum = array[0];
        int max = array[0];
        for(int i=1;i<n;i++){
            sum=getMax(sum+array[i],array[i]);
            if(max<sum){
                max=sum;
            }
        }
        return max;
    }
    public int getMax(int a,int b){
        return a>b?a:b;
    }
        
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值