题目描述:
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
思路解析:
- 暴力解法:直接用两个变量来表示子数组的头和尾,这样头是从0到n-1,尾是从i到n-1的,然后累加求和,找到最大
- 动态规划:max(array[i])=getMax(max(array[i-1])+array[i],array[i]).时间复杂度为O(n)
代码:
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
if(array==null||array.length==0){
return 0;
}
int n=array.length;
int sum = array[0];
int max = array[0];
for(int i=1;i<n;i++){
sum=getMax(sum+array[i],array[i]);
if(max<sum){
max=sum;
}
}
return max;
}
public int getMax(int a,int b){
return a>b?a:b;
}
}