中国科学院大气所李建平的
线性相关 Linear Correlation
mscorrelation_2(n,x,y,r)
Correlations between two anomaly series of 12 calendar months, 4 seasons (DJF, MAM, JJA and SON), monthly, seasonal and annual data from monthly anomaly series x(i,12) and y(i,12) (i=1,...,n)
求逐月异常序列x(n,12)和y(n,12)(n是年)的相关系数r(24),其中j=1~12是1~12个月的情形,13~22是冬、春、夏、秋、冬季逐月、春季逐月、夏季逐月、秋季逐月、逐月、年、冬半年逐月(NDJFMA)、夏半年逐月(MJJASO)的序列的情形。
llcorrelation(n,x,y,nt,rt)
Calculating lagged and leading correlation coefficients rt(-nt:nt) between two anomaly series x(i) and y(i).
求(逐日、逐月、逐季、年际)异常序列x(n)和y(n)之间的滞后超前的相关系数rt(-nt:nt),其中nt最大的滞后或超前时间(单位:日、月、季、年等)。
llyear(ny,nm,x,y,ly,rt)
ly-year lagged and leading correlation coefficients rt(-ly:ly,nm) between two anomaly series x(ny,nm) and y(ny,nm).
求逐月异常序列x(n,12)和y(n,12)(n是年)相同月份之间的滞后超前nt年的相关系数rt(-nt:nt,12),其中nt最大的滞后或超前时间(单位:年)。
mllcorrelation(n,nt,x,y,rt)
nt-month (or nt-season, or others) lagged and leading correlation coefficients rt(-nt:nt,nm) between two anomaly series x(ny,nm) and y(ny,nm).
求逐月、逐季或其他异常序列x(n,nm)和y(n,nm)(n是年)不同月份之间的滞后超前nt月的相关系数rt(-nt:nt,nm),其中nt最大的滞后或超前时间(单位:月、季或其他)。
correlationmiss(n,x,y,undef,r,nr)
Correlation coefficient r between two series with missing data
求有缺省资料的两个序列x(n)和y(n)的相关系数r。
谱分析 Spectrum Analysis
一维离散功率谱分析 Discrete Fourier spectrum of one-dimensional series
fourier(n,x,a,b,c,s,cta)
The discrete Fourier spectrum of one-dimensional series x(n).
求一维序列x(n)的离散Fourier谱分析,s(0:m)离散功率谱,c(0:m)振幅谱,cta(0:m)位相谱,其中m=[n/2.]。
dspectrum(n,lw,x,tl,sl,st95)
Subroutine for discrete spectrum analysis of an one-dimensional series x(i) (i=1,...,n).
具有噪音检验的一维序列x(n)的离散功率谱分析,ol(lw)频率,tl(lw)周期,sl(lw)离散功率谱,st95(lw)红噪音或白噪音谱的95%置信上限,其中lw=[n/2.]。注意:很多同学在使用这个程序时都问及在计算滞后相关的模块中,求滞后相关为什么用n而不用n-i,其实这是由实际资料的特性和统计学的基本原理决定的(很多统计学书中也谈到这一点)。一是序列的平稳性假设就要求序列的均值和方差保持不变,二是通常资料太短,导致用较短的资料得到的相关结果具有不稳定性,掩盖了事物的真相,因此,用n要好于n-i。一些同学也做了试验证实了这一点(有时n-i还得到错误的结论,需要各自使用者注意的地方)。谢谢大家提出的问题。
一维连续功率谱分析 Continuous spectrum analysis of an one-dimensional series
cspectrum(n,m,x,ol,tl,sl,st95,strw)
Subroutine for continuous spectrum analysis of an one-dimensional series x(i) (i=1,...,n).
一维序列x(n)的连续功率谱分析,ol(0:m)频率,tl(0:m)周期,sl(0:m)连续功率谱,st95(0:m)红噪音或白噪音谱的95%置信上限,strw(0:m) 红噪音或白噪音的谱密度,其中m=[n/2.]。
交叉谱分析 Continuous cross spectrum analysis of two one-dimensional series
ccrossspectrum(n,m,x,y,ol,tl,px,py,px95,py95,rxy,cxy,lxy,rxy951,rxy952)
Subroutine for continuous cross spectrum analysis of two one-dimensional series x(i) and y(i) (i=1,...,n).
两序列x(n)和y(n)的交叉谱分析,ol(0:m)频率,tl(0:m)周期,px(0:m)是x(n)的连续功率谱,py(0:m)是y(n)的连续功率谱,pxy(0:m)协谱,qxy(0:m)余谱,rxy(0:m)凝聚谱,cxy(0:m)位相差谱,lxy(0:m)滞后时间长度谱,rxy951(0:m)凝聚谱F-检验的95%置信上限,rxy952(0:m)凝聚谱Goodman-检验的95%置信上限,其中m=[n/2.]。
合成分析 Composite Analysis
标量的合成分析 Composite analysis for scalar quantity
differencehl1(n,x,f,coefh,coefl,fh,fl,dh,dl,dhl,tn)
求f(n)在指数x(n)为高指数年(x(n)>coefh的年)的平均值fh、低指数年(x(n)coefh的年)的平均值fh(2)、低指数年(x(n)<coefh的年)的平均值fl(2)、高指数年与气候平均的合成差dh(2)、低指数年与气候平均的合成差dl(2)、以及高低指数年的合成差dhl(2)和差的显著性tn(5,3)。
differhl2V(n,x,f,nc,fh,fl,dh,dl,dhl,tn)
求矢量f(n,2)在指数x(n)为nc个最强的指数年的平均值fh(2)、nc个最弱的指数年的平均值fl(2)、nc个最强的指数年与气候平均的合成差dh(2)、nc个最弱的指数年与气候平均的合成差dl(2)、以及强弱指数年的合成差dhl(2)和差的显著性tn(5,3)。
主分量分析 Principal Component Analysis (PCA)
经验正交函数分解 Empirical Orthogonal Functions (EOF's)
eof(m,n,mnl,f,ks,er,egvt,ecof)
求时空场f(m,n)的特征向量egvt(m,mnl),时间系数ecof(mnl,n),特征值er(mnl,1),累积特征值er(mnl,2),解释方差er(mnl,3),累积解释方差er(mnl,4)
旋转经验正交函数分解 Rotated Empirical Orthogonal Functions (REOF's)
reof(m,n,mnl,np,f,ks,er,egvt,ecof,rer,regvt,recof)
求时空场f(m,n)的特征向量egvt(m,mnl),时间系数ecof(mnl,n),旋转特征向量regvt(m,mnl),时间系数recof(mnl,n)
插值 Interpolation
样条内插 Spline Interpolation
splinev(n,x,y,m,t,yp1,ypn,sy)
已知节点x(n)和函数值y(n),用三次样条求节点t(m)上的内插值sy(m)。
滤波分析 Filter
二阶Butterworth带通滤波器 Second Order Butterworth Band-Pass Filter
Bfilter2(n,x,y,a,b1,b2)
求序列x(n)(n是资料长度)的二阶Butterworth带通滤波序列y(n)
高斯低通滤波器 M-term Guassian-Type Filter
guassfilter_2(n,m,x,y)
求序列x(n)(n是资料长度)的m项高斯低通滤波序列y(n)
插值 Interpolation
样条内插 Spline Interpolation
splinev(n,x,y,m,t,yp1,ypn,sy)
已知节点x(n)和函数值y(n),用三次样条求节点t(m)上的内插值sy(m)。
微分方程数值积分 Numerical Integration of Differential Equations
一到六阶定步长显式Runge-Kutta方法 Fixed Stepsize Explicit Runge-Kutta Method of Orders from 1 to 6
Runge-Kutta.f
subroutine eu1(n,yn,h) : the Euler's method
subroutine rk2(n,yn,h) : the improved Euler's method
subroutine rk3(n,yn,h) : a Runge-Kutta method of order 3
subroutine rk4(n,yn,h) : a Runge-Kutta method of order 4
subroutine rk5(n,yn,h) : a Runge-Kutta method of order 5
subroutine rk6(n,yn,h) : a Runge-Kutta method of order 6
subroutine rkm2(n,yn,h): another Runge-Kutta method of order 2
subroutine rkh3(n,yn,h): another Runge-Kutta method of order 3