一、关于Spark
Spark最初由美国加州伯克利大学(UCBerkeley)的AMP(Algorithms, Machines and People)实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。Spark在诞生之初属于研究性项目,其诸多核心理念均源自学术研究论文。2013年,Spark加入Apache孵化器项目后,开始获得迅猛的发展,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(即Hadoop、Spark、Storm)。
1.1 Spark与Hadoop
Hadoop中包含计算框架MapReduce和分布式文件系统HDFS。
Spark是MapReduce的替代方案而且兼容HDFS、Hive等分布式存储层,融入Hadoop的生态系统,并弥补MapReduce的不足。
Hadoop虽然已成为大数据技术的事实标准,但其本身还存在诸多缺陷,最主要的缺陷是其MapReduce计算模型延迟过高,无法胜任实时、快速计算的需求,因而只适用于离线批处理的应用场景。
Spark在借鉴Hadoop MapReduce优点的同时,很好地解决了MapReduce所面临的问题。相比于MapReduce,Spark主要具有如下优点:
Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作,还提供了多种数据集操作类型,编程模型比MapReduce更灵活;
Spark提供了内存计算,中间结果直接放到内存中,带来了更高的迭代运算效率;
Spark基于DAG的任务调度执行机制,要优于MapReduce的迭代执行机制。
Spark最大的特点就是将计算数据、中间结果都存储在内存中,大大减少了IO开销,因而,Spark更适合于迭代运算比较多的数据挖掘与机器学习运算。使用Hadoop进行迭代计算非常耗资源,因为每次迭代都需要从磁盘中写入、读取中间数据,IO开销大。而Spark将数据载入内存后,之后的迭代计算都可以直接使用内存中的中间结果作运算,避免了从磁盘中频繁读取数据。
1.2 Spark生态系统BDAS
在实际应用中,大数据处理主要包括以下三个类型:
复杂的批量数据处理:时间跨度通常在数十分钟到数小时之间;
基于历史数据的交互式查询:时间跨度通常在数十秒到数分钟之间;
基于实时数据流的数据处理:时间跨度通常在数百毫秒到数秒之间。
Spark专注于数据的处理分析,而数据的存储还是要借助于Hadoop分布式文件系统HDFS、Amazon S3等来实现的。因此,Spark生态系统可以很好地实现与Hadoop生态系统的兼容,使得现有Hadoop应用程序可以非常容易地迁移到Spark系统中。
BDAS是本科立大学提出的基于Spark的数据分析栈(Berkeley Data Analytics Stack),其核心框架是Spark,同时涵盖支持结构化数据SQL查询与分析的查询引擎Spark SQL,提供机器学习功能呢过的系统MLBase及底层的分布式学习库MLlib,饼形图计算框架GraphX,流计算框架Spark Streaming,近似查询引擎BlinkDB,内存分布式文件系统Tachyon,资源管理框架Mesos等子项目。
* Spark Core:Spark Core包含Spark的基本功能,如内存计算、任务调度、部署模式、故障恢复、存储管理等。Spark讲分布式数据抽象为RDD(弹性分布式数据集),并实现了应用任务调度、RPC、序列化和压缩,并为运行在其上层的组件提供API。其底层采用Scala这种函数式语言书写而成。
* Spark SQL:Spark SQL提供在大数据上的SQL查询功能,允许开发人员直接处理RDD,同时也可查询Hive、HBase等外部数据源。Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行查询,并进行更复杂的数据分析;
* Spark Streaming:Spark Streaming支持高吞吐量、可容错处理的实时流数据处理,其核心思路是将流式计算分解成一系列短小的批处理作业,按时间片累计为RDD,然后将每个RDD进行批处理,进而实现大规模的流数据处理。Spark Streaming支持多种数据输入源,如Kafka、Flume和TCP套接字等;
* MLlib(机器学习):分布式机器学习算法库,MLlib提供了常用机器学习算法的实现,包括聚类、分类、回归、协同过滤等,降低了机器学习的门槛,开发人员只要具备一定的理论知识就能进行机器学习的工作;
* GraphX(图计算):GraphX是Spark中用于图计算的API,可认为是Pregel在Spark上的重写及优化,Graphx性能良好,拥有丰富的功能和运算符,能在海量数据上自如地运行复杂的图算法。
二、Spark运行架构
2.1 架构设计
Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)。其中,集群资源管理器可以是Spark自带的资源管理器,也可以是YARN或Mesos等资源管理框架。
与Hadoop MapReduce计算框架相比,Spark所采用的Executor有两个优点:一是利用多线程来执行具体的任务(Hadoop MapReduce采用的是进程模型),减少任务的启动开销;二是Executor中有一个BlockManager存储模块,会将内存和磁盘共同作为存储设备,当需要多轮迭代计算时,可以将中间结果存储到这个存储模块里,下次需要时,就可以直接读该存储模块里的数据,而不需要读写到HDFS等文件系统里,因而有效减少了IO开销;或者在交互式查询场景下,预先将表缓存到该存储系统上,从而可以提高读写IO性能。
在Spark中,一个应用(Application)由一个任务控制节点(Driver)和若干个作业(Job)构成,一个作业由多个阶段(Stage)构成,一个阶段由多个任务(Task)组成。当执行一个应用时,任务控制节点会向集群管理器(Cluster Manager)申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行任务,运行结束后,执行结果会返回给任务控制节点,或者写到HDFS或者其他数据库中。
2.2 执行流程
(1)当一个Spark应用被提交时,首先需要为这个应用构建起基本的运行环境,即由任务控制节点(Driver)创建一个SparkContext,由SparkContext负责和资源管理器(Cluster Manager)的通信以及进行资源的申请、任务的分配和监控等。SparkContext会向资源管理器注册并申请运行Executor的资源;
(2)资源管理器为Executor分配资源,并启动Executor进程,Executor运行情况将随着“心跳”发送到资源管理器上;
(3)SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAG调度器(DAGScheduler)进行解析,将DAG图分解成多个“阶段”(每个阶段都是一个任务集),并且计算出各个阶段之间的依赖关系,然后把一个个“任务集”提交给底层的任务调度器(TaskScheduler)进行处理;Executor向SparkContext申请任务,任务调度器将任务分发给Executor运行,同时,SparkContext将应用程序代码发放给Executor;
(4)任务在Executor上运行,把执行结果反馈给任务调度器,然后反馈给DAG调度器,运行完毕后写入数据并释放所有资源。
对于(3)中的DAG图:
在Spark应用中,整个执行流程在逻辑运算之间会形成有向无环图。Action算子触发之后会将所有累计的算子形成一个有向无环图,然后由调度器调度该图上的任务进行运算。Spark根据RDD之间不同的依赖关系切分形成不同的阶段(stage),一个阶段包含一系列函数进行流水线执行。图中的ABCDEF分别代表不同的RDD,RDD内的一个方框代表数据块。数据从HDFS输入Spark,形成RDD A、RDD C,RDD C上执行map操作转换为RDD D,RDD B、RDD E进行join操作转换为F,而B到F的过程中又会进行shuffle。最后RDD F通过函数save按时SequenceFile输出保存到HDFS中。
Spark运行架构具有以下特点:
(1)每个应用都有自己专属的Executor进程,并且该进程在应用运行期间一直驻留。Executor进程以多线程的方式运行任务,减少了多进程任务频繁的启动开销,使得任务执行变得非常高效和可靠;
(2)Spark运行过程与资源管理器无关,只要能够获取Executor进程并保持通信即可;
(3)Executor上有一个BlockManager存储模块,类似于键值存储系统(把内存和磁盘共同作为存储设备),在处理迭代计算任务时,不需要把中间结果写入到HDFS等文件系统,而是直接放在这个存储系统上,后续有需要时就可以直接读取;在交互式查询场景下,也可以把表提前缓存到这个存储系统上,提高读写IO性能;
(4)任务采用了数据本地性和推测执行等优化机制。数据本地性是尽量将计算移到数据所在的节点上进行,即“计算向数据靠拢”,因为移动计算比移动数据所占的网络资源要少得多。而且,Spark采用了延时调度机制,可以在更大的程度上实现执行过程优化。比如,拥有数据的节点当前正被其他的任务占用,那么,在这种情况下是否需要将数据移动到其他的空闲节点呢?答案是不一定。因为,如果经过预测发现当前节点结束当前任务的时间要比移动数据的时间还要少,那么,调度就会等待,直到当前节点可用。
3. RDD弹性分布式数据集
3.1 背景
在实际应用中,存在许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销。
3.2 RDD概念
Spark是一个分布式计算框架,而RDD是对分布式内存数据的抽象,可以认为RDD就是Spark分布式算法的数据结构,而RDD之上的操作是Spark分布式算法的核心原语,由数据结构和原语设计上层算法。Spark最终将算法(RDD上的一连串操作)翻译为DAG形式的工作流进行调度,并进行分布式任务的分发。
一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可以分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集来创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和groupBy)而创建得到新的RDD。
对RDD可以有两种操作算子:转换(Transformation)和行动(Action)
(1)转换:Transformation操作室延迟计算的,也就是说从一个RDD转换生成另一个RDD的转换操作不是马上执行,需要等到有Action操作的时候才会真正触发运算。
(2)行动:Action算子会触发spark提交作业(Job),并将数据输出Spark系统。
前者用于执行计算并指定输出的形式,后者指定RDD之间的相互依赖关系。两类操作的主要区别是,转换操作(比如map、filter、groupBy、join等)接受RDD并返回RDD,而行动操作(比如count、collect等)接受RDD但是返回非RDD(即输出一个值或结果)。
前者用于执行计算并指定输出的形式,后者指定RDD之间的相互依赖关系。两类操作的主要区别是,转换操作(比如map、filter、groupBy、join等)接受RDD并返回RDD,而行动操作(比如count、collect等)接受RDD但是返回非RDD(即输出一个值或结果)。
Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作。RDD典型的执行过程如下:
- RDD读入外部数据源(或者内存中的集合)进行创建;
- RDD经过一系列的“转换”操作,每一次都会产生不同的RDD,供给下一个“转换”使用;
- 最后一个RDD经“行动”操作进行处理,并输出到外部数据源(或者变成Scala集合或标量)。
需要说明的是,RDD采用了惰性调用,即在RDD的执行过程中,真正的计算发生在RDD的“行动”操作,对于“行动”之前的所有“转换”操作,Spark只是记录下“转换”操作应用的一些基础数据集以及RDD生成的轨迹,即相互之间的依赖关系,而不会触发真正的计算。
RDD在Spark中的执行过程如下:
(1)创建RDD对象;
(2)SparkContext负责计算RDD之间的依赖关系,构建DAG;
(3)DAGScheduler负责把DAG图分解成多个阶段,每个阶段中包含了多个任务,每个任务会被任务调度器分发给各个工作节点(Worker Node)上的Executor去执行。
4、Spark的部署模式
Spark应用程序在集群上部署运行时,可以由不同的组件为其提供资源管理调度服务(资源包括CPU、内存等)。比如,可以使用自带的独立集群管理器(standalone),或者使用YARN,也可以使用Mesos。因此,Spark包括三种不同类型的集群部署方式,包括standalone、Spark on Mesos和Spark on YARN。1.standalone模式
与MapReduce1.0框架类似,Spark框架本身也自带了完整的资源调度管理服务,可以独立部署到一个集群中,而不需要依赖其他系统来为其提供资源管理调度服务。在架构的设计上,Spark与MapReduce1.0完全一致,都是由一个Master和若干个Slave构成,并且以槽(slot)作为资源分配单位。不同的是,Spark中的槽不再像MapReduce1.0那样分为Map 槽和Reduce槽,而是只设计了统一的一种槽提供给各种任务来使用。
2.Spark on Mesos模式
Mesos是一种资源调度管理框架,可以为运行在它上面的Spark提供服务。Spark on Mesos模式中,Spark程序所需要的各种资源,都由Mesos负责调度。由于Mesos和Spark存在一定的血缘关系,因此,Spark这个框架在进行设计开发的时候,就充分考虑到了对Mesos的充分支持,因此,相对而言,Spark运行在Mesos上,要比运行在YARN上更加灵活、自然。目前,Spark官方推荐采用这种模式,所以,许多公司在实际应用中也采用该模式。
3. Spark on YARN模式
Spark可运行于YARN之上,与Hadoop进行统一部署,即“Spark on YARN”,其架构如图9-13所示,资源管理和调度依赖YARN,分布式存储则依赖HDFS。
以上是三种spark典型的部署模式,但是在很正的企业应用中,往往会针对不同的应用场景,采用不同的部署应用方式,或者采用Spark完全替代原有的Hadoop架构,或者采用Spark和Hadoop一起部署的方式。
参考资料:
http://dblab.xmu.edu.cn/blog/1709-2/