写在本学期开学前

还有几天就要成为研二学生,真是令人唏嘘不已。最近也试着投了几份简历给intel,还没有收到任何回复,也是僵硬。

回顾研一这一年呢,虽说一直在忙,感觉就没停下过,但是仔细想想学到了什么,竟也说不出什么一二三,说到底还是太杂,没有计划性,就像batchsize太小的SGD。其实反反复复,西瓜书、蓝皮书这些也看了几遍,算法也都挨个推导过,但此时回忆不出半分。大概是以前的观点就是错的,一直以为理论概念扎实,就可以在面试中脱颖而出。研一下呢水了一个百度的CV比赛,初赛是选了个DenseNet随便改改,做了个多分类的模型,复赛目标检测,更是直接git clone了一个SSD,竟然也拿到了50/1100+的成绩(迫真)。在亲身经历了师兄们的找实习笔试后,终于意识到了动手刷题的重要性,所以暑假时间里稍微复习了一下python和cpp的语法,然后照着本科的数据结构教材又学习了一遍,就开始刷题了,《剑指offer》也刷了五十几道,说来惭愧,只是对语法上有了一些更多的理解。

今年的算法岗可以说是寒冬的开始了,原先意图蒙混过关、上几节吴恩达的课就做算法岗的全面暴死,甚至部分人决定转为后台开发。给自己重新定位了一下,感觉还是应该朝着算法的方向去努力,毕竟还是有一点点道听途说的对写业务代码的恐惧。大体上,是打算做推荐算法这一类的(虽然对这方面还是什么都不懂的样子(逃。大致安排了一下接下来要学的,感觉安排得有点多,先学着吧。

  1. 《Linux内核设计与实现》这本书对操作系统做了简单的介绍,不是很详细,300+页,为学其他方面做一下铺垫,起码现在看来不打算在系统方面深究。这个应该不需要耗时很久,姑且作为阅读杂书。
  2. 通过UCB的CS186的Project学习一下数据库。可能需要耗时一个月以上。
  3. 通过CMU的15440(2014)学习一下分布式系统,感觉企业的岗位技能需求经常会见到Spark、Hadoop之类。
  4. Coursera上的关于Scala的五门课,内容还是比较多的,涉及到语言的学习与大数据处理相关。
  5. 《推荐系统实践》这本书据说比较易读,通过讲解各大公司的推荐系统对这个方向的知识做一个大致的了解。之后呢就是阅读知乎收藏的一些这方面的论文啦。
  6. C++的STL有时间的话详细学习一下,如何实现之类的。Github上fork了一个还不错的清单,无聊的时候可以从头挨个实现一下,也是丰富自己Github的一个途径,呃,好惨。
  7. 天池和Kaggle刷到合适的比赛的话也可以做一下,毕竟还没正经拿过这类算法比赛的名次,呜呜呜。

以上。=ω=


更新于本学期结束。
在学期即将结束之际,再来回顾开学时的安排,顿觉羞愧。计划是不适合做长久而又细化的,因为根本赶不上变化的速度,就像我的学业。
最近这段时间投简历,越发发现看的太多,做的太少,所以知识统统只是从脑中过,然后又被update掉,并没有留下。学习记录还是要记的,接下来就慢一点,慢慢读一些论文,学习一下别人的程序,总结一下就好。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值