一种VRPTW初始解构造方法(含惩罚时间)

本文介绍了一种针对VRPTW问题的初始解构造方法,通过引入惩罚因子处理重叠时间和超载,利用邻域搜索算法,详细展示了如何构造满足车辆载重限制及时间窗口约束的初始解,并提供了Python实现代码示例。

一种VRPTW初始解构造方法(含惩罚时间)

  在使用智能算法求解带时间窗的车辆路径规划问题(VRPTW)时,面临的第一个问题就是初始解的构造,不同与旅行商问题(TSP)只要将所有客户打乱顺序即可得到一个初始解。VRPTW的初始解构造需要考虑两点:

  1. 每辆车的载重量上限;
  2. 客户点的开始服务时间约束。

在使用智能算法(本文以邻域搜索为例)求解VRPTW问题时,想要构造一个可行的满足所有约束的初始解较为复杂,为了构造方便以及避免后续需要对所有产生的新解进行可行性判断,一般引入两个惩罚因子,一个是对重叠时间进行惩罚,一个是对超载进行惩罚。

一种构造初始解的方法

构造过程如下

流程图示意图

下面是python构造初始解的代码。

class CustomerType:

    def __init__(self, c_id, x, y, demand, begin, end, service):
        """

        :param c_id: 客户点id
        :param x: x轴坐标
        :param y: y轴坐标
        :param demand: 需求量
        :param begin: 早开始时间
        :param end: 晚开始时间
        :param service: 服务时长
        """
        self.c_id = c_id
        self.x = x
        self.y = y
        self.demand = demand
        self.begin = begin
        self.end = end
        self.service = service
        self.r = 0


class RouteType:
    def __init__(self):
        self.load = 0  # 单条路径载重
        self.sub_t = 0  # 单条路径违反各节点时间窗约束时长总和
        self.dis = 0  # 单挑路径总长度
        self.v = []  # 单条路径顾客节点序列


# 计算距离
def distance(c1: CustomerType, c2: CustomerType):
    return int(((c1.x - c2.x) ** 2 + (c1.y - c2.y) 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值