一种VRPTW初始解构造方法(含惩罚时间)
在使用智能算法求解带时间窗的车辆路径规划问题(VRPTW)时,面临的第一个问题就是初始解的构造,不同与旅行商问题(TSP)只要将所有客户打乱顺序即可得到一个初始解。VRPTW的初始解构造需要考虑两点:
- 每辆车的载重量上限;
- 客户点的开始服务时间约束。
在使用智能算法(本文以邻域搜索为例)求解VRPTW问题时,想要构造一个可行的满足所有约束的初始解较为复杂,为了构造方便以及避免后续需要对所有产生的新解进行可行性判断,一般引入两个惩罚因子,一个是对重叠时间进行惩罚,一个是对超载进行惩罚。
一种构造初始解的方法
构造过程如下


下面是python构造初始解的代码。
class CustomerType:
def __init__(self, c_id, x, y, demand, begin, end, service):
"""
:param c_id: 客户点id
:param x: x轴坐标
:param y: y轴坐标
:param demand: 需求量
:param begin: 早开始时间
:param end: 晚开始时间
:param service: 服务时长
"""
self.c_id = c_id
self.x = x
self.y = y
self.demand = demand
self.begin = begin
self.end = end
self.service = service
self.r = 0
class RouteType:
def __init__(self):
self.load = 0 # 单条路径载重
self.sub_t = 0 # 单条路径违反各节点时间窗约束时长总和
self.dis = 0 # 单挑路径总长度
self.v = [] # 单条路径顾客节点序列
# 计算距离
def distance(c1: CustomerType, c2: CustomerType):
return int(((c1.x - c2.x) ** 2 + (c1.y - c2.y)

本文介绍了一种针对VRPTW问题的初始解构造方法,通过引入惩罚因子处理重叠时间和超载,利用邻域搜索算法,详细展示了如何构造满足车辆载重限制及时间窗口约束的初始解,并提供了Python实现代码示例。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



