POJ3368题解

2 篇文章 0 订阅
1 篇文章 0 订阅

题目大意:一个非降序序列,有若干查询,每次查询一个区间中重复次数最多的数字的个数。

思路:因为是非降序的,所以可以从头遍历把每个相同的数字划为一个块,用p[i]表示ai划分到了哪个块里面,同时还可以记录每个块的左右边界。同时还可以获得每块中数字的个数。可以把这些个数处理成ST表。

对于每个给定的查询区间,如果区间完全包含于某一个块内,那么说明区间内所有数字相同,答案就是区间的长度。否则,该查询区间可以分为3个部分:1)左侧[l,r[p[l]]的一个块的部分,2)左右侧[l[p[r],r]的另一个块的部分,以及3)中间的若干完整的块。其中1),2)中重复数字的数量分别就是他们的区间长度,而3)的部分可以通过ST表用RMQ求得,答案就是这三者取最大值。

代码: 

//POJ.3368
//Author: Prgl
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f

//ST表,各段数字出现次数,第i个数字位于第几段,段的左右界(左闭右开)
int b[100010][30], freq[100010], p[100010], l[100010], r[100010];

void RMQ_init(int n)
{
	for (int i = 0; i < n; i++)
		b[i][0] = freq[i];
	for (int j = 1; (1 << j) <= n; j++)
	{
		for (int i = 0; i + (1 << j) - 1 < n; i++)
			b[i][j] = max(b[i][j - 1], b[i + (1 << (j - 1))][j - 1]);
	}
}

int RMQ(int l, int r)
{
	int k = 0;
	if (l >= r)
		return 0;
	while (1 << (k + 1) < r - l)
		k++;

	return max(b[l][k], b[r - (1 << k)][k]);
}

int N, Q;

void solve()
{
	memset(freq, 0, sizeof(freq));
	int num, last;
	int index = 0;
	for (int i = 0; i < N; i++)
	{
		cin >> num;
		if (i == 0)
		{
			last = num;
			freq[index]++;
			l[0] = 0;
		}
		else
		{
			if (num == last)
			{
				freq[index]++;
			}
			else
			{
				last = num;
				r[index++] = i;
				freq[index]++;
				l[index] = i;
			}
		}
		p[i] = index;
	}
	r[index] = N;
	RMQ_init(index + 1);
	int ql, qr, ans, lo, hi;
	for (int i = 0; i < Q; i++)
	{
		scanf("%d%d", &lo, &hi);
		ql = lo - 1;
		qr = hi - 1;
		if (p[ql] == p[qr])
			ans = qr - ql + 1;
		else
		{
			int a = r[p[ql]] - ql;
			int b = qr - l[p[qr]] + 1;
			int c = RMQ(p[ql] + 1, p[qr]);
			ans = max(a, max(b, c));
		}
		printf("%d\n", ans);
	}
}

int main()
{
	scanf("%d", &N);
	while (N != 0)
	{
		scanf("%d", &Q);
		solve();
		scanf("%d", &N);
	}

	return 0;
}
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值