关于人工智能的一点思考

#关于人工智能的一些思考#

什么是智能

智能与语言的关系

大语言模型的智能的本质是什么

通用人工智能的一条可能路径

最近deepseek很火啊,R1一出来,全球都沸腾了,AI平权终于到来了。我想结合自己的一些思考,简单的谈一些自己的认知

一、什么是智能

这个问题许多教科书都有解释,看一下百度的智能(Intelligence):是智力能力的总称,中国古代思想家一般把看做是两个相对独立的概念。(等于没说,但是提到了将智与能分开判断)

我理解的智能等级:

1.刺激-反应(初级的、原始的智能,等级一)

如果一个生物对环境的刺激能够产生反应,可以认为该生物具有初级的智能。对于人工智能来说,其智能主体就不是生物,可以是计算机中的程序、量子的比特、人工培养的细胞等等,只要对这个主体施加一个刺激(或者一个输入),便能产生一个反应(或一个输出),我认为便具有智能。有的人会问,小时候玩的发条玩具,只要上紧了发条,便能蹦来蹦去,那是不是也有智能?我个人认为,这不属于具有智能,其实智能还隐含一点,就是这个反应应当具有一定的意义(或者目标、或者价值),比如植物的趋光性,是为了生存,疯子所做的事没有连续一致的目标性,谓约失智,所以强化学习中才会有价值函数,有了价值函数(或者目标),才能使智能体内部的信息熵逐渐变小,才能产生连续一致的行为(或者反应)。

所以

一级智能:具有刺激-反应-价值三者一体的就是初级智能。

二、智能与语言、文字的关系

初级智能具有明显的个体性质,当多个初级智能体出现在一起的时候,分工协作往往比单打独斗效率更高,出于协作交流的需要,智能体之间需要进行信息的传递、交换、共享。这就诞生了

二级智能:就是初级智能的基础上,智能体之间能够进行信息的交流

比如对狼群来说就是嚎叫的声音,鲸鱼通过超声波,人即可以通过声音,也可以通过文字、图片、视频,甚至脑机接口的电讯号,都可以交流。

文字的本质是什么呢?文字是信息(或者知识)的载体,是一种符号化的系统,具有高度的抽象化特征,所以文字的泛化能力很强。图片的特点是巨大的信息量,但图片所承载的信息是具体的、非抽象的。

这里浅聊一下什么是泛化:用集合论的观点,如果你能在一个集合里面,找到集合里所有元素的一个共同特征(或者属性),我便理解是进行了一次泛化,一次泛化之后就可以用一个概念(起个新名词)来定义这个子集,所以泛化可以连续进行,所以,我认为文字可以用一种层次化的概念树来表示。

语言是文字的一种声音的映射,不如各地的方言使用同一中文字。所以准确点说,现在的大语言模型(LLM,Large Language Model)应该翻译为大文字模型。

三、大语言模型的智能的本质是什么

有了文字(或者图片,或者视频),知识(经验,或者认识大自然的规律)就可以传递。所以三级智能的重要特征:

三级智能:在二级智能的基础上,能够进行学习

所以学习就是通过载体(文字、图片、视频)获取知识(经验)的一个过程,如果不学习,那么你就主动放弃了三级智能,你就比别人低一个等级:)

那学习是什么?学习的本质是什么?它有哪些具体的要求?

首先,学习是将未知的变成已知的,就像人类的初级学习一样,通过观察、通过交互、通过实践对以前未知的事物建立起一些具体或者抽象的概念,了解了这些实体或概念之间的关系,一些规律。这些关系或规律,包括因果关系(if...then...),与或非的逻辑关系,时空上的有序关系,结果上的等效等价等同关系,等等。关系的种类有很多,根据唯物主义辨证法的观点,“事物是普遍联系的”,世间万事万物之间都有关系,对于有n个元素的集合,就有n!个关系,所以电脑或者LLM要学习的知识增加多一点点,计算量是巨大的,也是不能无限的学习下去。

这里的关系可以用知识图谱的<实体,关系,实体>来表示,也可以用集合论中<S,*>来理解(S是集合,*代表运算),关系也是一种运算,一种关系或运算具有什么性质,决定了<S,*>指向的空间的性质。

其次,学习是有程度区分的,知其然是最基本的,知其所以然才更高级。

什么是知其然呢?就是了解一种事物的表象,但不理解其中的机理,知道出现一种事物后会发生什么,但是不知道为什么会发生。知其然就像我们的应试教育,很多人会利用公式进行计算,但是并不理解公式推导背后的原理。

我认为大语言模型就是这样滴:),大语言模型就是通过巨量的文字题海战术,使其在针对具体的问题时,可以得出正确的答案,但大模型并不真正理解问题是什么,大语言模型更像使用了巨量参数做的一次文字空间变换运算,只不过运算的结果恰好符合我们的预期罢了。

什么是知其所以然呢?知其所以然就是了解事物背后各种概念之间的关系,知道各种概念是如何联系、如何演算、如何得出会发生什么的结论。举个栗子,我们在学习数学的时候,经常是中国字都认识 ,但一到做题或者考试的时候就两眼一黑,脑袋空空,这就是我们不了解相关数学问题背后各概念之间的关系,所以不知其所以然。

所以怎么知道大语言模型不知其所以然呢,一个是幻觉,一个是噪声,一个是泛化,当大语言模型在一本正经的胡说八道时,大语言模型并不知道自己在说什么。所以大语言模型是一个黑盒子,不可解释,只是通过巨量的文字训练,死记硬背了很多概念、常识和公式而已。

所以大语言模型是三级智能,不过是三级智能Minus,大语言模型能力和地球上95%的人在学习上的能力是一样的,只知表象,不知其理,不求甚解,这对于人来说,大多数情况下没什么问题:)人还是比较好混的。

所以大语言模型的智能有显著的特点:

1.大语言模型在语言上的理解是成功的。大语言模型已经理解了文字背后的词法、语法、语义,了解了每种语言的文字规则,翻译要求不同语言的语义精确对应,所以用大语言模型做个翻译是没什么问题的

2.大语言模型内部存储许多人类灌输给它的知识,但它未必深知其中的原理,所以不能举一反三和灵活运行。这里的灵活运用和大模型的“泛化”能力我认为是有区别的,不可否认,大模型的泛化能力是所有机器学习方法中非常优秀的,但这种泛化强调的是在未知数据中的一般表现,从大模型可能犯一些低级的常识性、逻辑性的错误就知道,大模型并没有理解问题背后的原理。

3.大语言模型已可以非常好的处理一般常识和推理,如步骤先后的、逻辑的推演、任务的分解等等。

4.大语言模型已可以提取实体或概念,并且学习到实体或概念之间的一些关系,包括:逻辑关系、因果关系、等价关系、包含关系、时序关系等等。

5.大语言模型目前存在明显的短板:大语言模型参数已经够大,不可能将所有的知识打包装进一个模型结构里,通过SFT去实现知识增量是一种费时费力费钱的事,open ai的ceo恨不得把地球上所以的知识都塞到一个模型权重参数里面,结果发现地球上的知识不够用了,所以不是正道。

四、通用人工智能的一条可能路径

以上说了这么多,其实已经可以总结四级人工智能了

四级智能:在三级智能的基础上,已经知其然。四级智能已理解的实体或概念之间的关系,懂得利用关系进行各种关系运算或推断,并且可以不断的通过学习更新概念和关系。

四级人工智能如能实现,其实我认为已经是通用人工智能了。四级人工智能如果理解概念以及之间的关系,并且进行符号化,符号化后就可以和人类的知识对齐,四级人工智能就能和人类的知识对接,无限增加知识量。

那怎么将人类的知识和以后的大语言模型对接呢?

检索增强生成(Retrieval Augmented Generation),简称 RAG,已经成为当前最火热的LLM应用方案。因其不用训练大语言模型,还能将私域或行业里的知识的糅合进大语言模型的输出中,可以解决大模型知识的局限性,幻觉问题和数据安全性。

下图是一个简单的RAG例子,就是将私预的知识先存到向量数据库中,用户提一个问题,先在向量数据库中搜索一番,将可能与用户提问有关的信息都检索出来,利用设计好的提示词,经大模型“润色”后返回给用户。

当然有很多其他专业领域RAG的例子,如下图一个医疗领域RAG的例子

RAG的思想都大同小异。RAG利用了人类知识库符号化、确定化等的有点,将LLM变成了一个与用户沟通的语言工具,可以说很好的利用彼此的优点,落地容易,所以这应该是目前AGI+应用最多的而一种场景了。

那是不是RAG就是四级人工智能了呢?当然不是,它还有以下缺点

1.私域知识库是人类建立的,知识库建立是一个耗时耗力的工作,人力为之,耗时费神,不可持久也;

2.RAG只是将检索相关结果返回,并没有强调知识的加工和运算。

所以笔者提出一种AGI工程设想图

上图提出一种大模型通用AGI的工程设想图,我将其命名为KK AGI LLM利用语言理解的优势,负责系统与人类的交互。这KK AGI由一个简单的LLM、统一编码表、层次概念图、通用LLM和知识库组成。通用AGI系统分为两种应用模式:

1.学习模式

学习模式负责将人类已有的知识,按照人类可理解、可解释、符号化的方式自动提取更新到知识库中。这里的知识库可以是现有知识表示的各种形式,通用LLM负责将要学习的知识进行自动提取,按照可能大方式更新知识库,管理者、领域专家负责审核这些知识更新。

2.任务模式

也可以叫交互模式,普通用户提问,通过已有知识库的运算、推断,经通用LLM将结果返回用户。

可以看到LLM在KK AGI中的作用就是负责将人类的知识、提问、命令,翻译成对知识库的更新、查询,在将知识库运算后的结果,返回给用户,其实LLM就是一个“翻译”,LLM不需要对专业知识、领域知识的精通,它只需要了解概念之间的一般关系,只需要通识,而不要专精,只需要知其然,不需要知其所以然,这正是我所理解的LLM擅长做的。我们只需要训练出来一个具有通识、逻辑思考、推理的LLM就可以,不用专门对其进行数学、物理、化学方面的训练,用知识库就好啦。

以上只是个人的一个AGI构想,其中的工程化难点有很多,这里就不一一列举了,本人学识有限,欢迎各路大神留言指导指正,交流共进。

最后想说是否四级智能就是AI终极形态了呢,肯定不是

四级智能已经可以利用人类的已有的知识无限的提升AI的能力,五级智能已经超越了四级智能,它可能是一种神经网络模型的巨大进步或创新,也有可能是神经网络模型永远也达不到的,现在不得而知。

五级智能:五级智能就是可以真实世界进行交互,可以像人一样观察世界、思考背后的原理,可以做思想模型、思想实验,提出假设,利用已有知识进行佐证,甚至提出一种新的概念一种新的理论,从而发现知识。简单的说,五级智能就是可以发现知识。

五级AI就比人更聪明,它可以自主的发现新的知识,人类知识将会大爆炸。

个人认为一切的概念、知识都是现实世界在心里的一个映射,要做到知识发现,必须与真实世界交互,所以在AI还没有学会和现实世界交互之前,是不用担心AI会超过人类,不会出现像终结者中的机器人反过来统治人类的事情啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值