comfyui中的k采样器报错Given groups=1, weight of size [320, 4, 3, 3], expected input[2, 8, 96, 54] to have 4

求助大佬!!!我运行comfyui的时候,k采样器变紫,同时报错显示:

Error occurred when executing KSampler: Given groups=1, weight of size [320, 4, 3, 3], expected input[2, 8, 96, 54] to have 4 channels, but got 8 channels instead File "E:\ComfyUI-aki-v1.3\execution.py", line 316, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) File "E:\ComfyUI-aki-v1.3\execution.py", line 191, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) File "E:\ComfyUI-aki-v1.3\execution.py", line 168, in _map_node_over_list process_inputs(input_dict, i) File "E:\ComfyUI-aki-v1.3\execution.py", line 157, in process_inputs results.append(getattr(obj, func)(**inputs)) File "E:\ComfyUI-aki-v1.3\nodes.py", line 1429, in sample return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) File "E:\ComfyUI-aki-v1.3\nodes.py", line 1396, in common_ksampler samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-Impact-Pack\modules\impact\sample_error_enhancer.py", line 22, in informative_sample raise e File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-Impact-Pack\modules\impact\sample_error_enhancer.py", line 9, in informative_sample return original_sample(*args, **kwargs) # This code helps interpret error messages that occur within exceptions but does not have any impact on other operations. File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-AnimateDiff-Evolved\animatediff\sampling.py", line 420, in motion_sample return orig_comfy_sample(model, noise, *args, **kwargs) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-Advanced-ControlNet\adv_control\sampling.py", line 116, in acn_sample return orig_comfy_sample(model, *args, **kwargs) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-Advanced-ControlNet\adv_control\utils.py", line 117, in uncond_multiplier_check_cn_sample return orig_comfy_sample(model, *args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\sample.py", line 43, in sample samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI_smZNodes\smZNodes.py", line 104, in KSampler_sample return orig_fn(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-TiledDiffusion\utils.py", line 51, in KSampler_sample return orig_fn(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 829, in sample return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI_smZNodes\smZNodes.py", line 122, in sample return orig_fn(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 729, in sample return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 716, in sample output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 695, in inner_sample samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI_smZNodes\smZNodes.py", line 87, in KSAMPLER_sample return orig_fn(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-TiledDiffusion\utils.py", line 34, in KSAMPLER_sample return orig_fn(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 600, in sample samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\k_diffusion\sampling.py", line 144, in sample_euler denoised = model(x, sigma_hat * s_in, **extra_args) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 299, in __call__ out = self.inner_model(x, sigma, model_options=model_options, seed=seed) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 682, in __call__ return self.predict_noise(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 685, in predict_noise return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI_smZNodes\smZNodes.py", line 162, in sampling_function out = orig_fn(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 279, in sampling_function out = calc_cond_batch(model, conds, x, timestep, model_options) File "E:\ComfyUI-aki-v1.3\comfy\samplers.py", line 226, in calc_cond_batch output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-IC-Light-Native\ic_light_nodes.py", line 116, in wrapper_func return existing_wrapper(unet_apply, params=apply_c_concat(params)) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-IC-Light-Native\ic_light_nodes.py", line 108, in unet_dummy_apply return unet_apply(x=params["input"], t=params["timestep"], **params["c"]) File "E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI-Advanced-ControlNet\adv_control\utils.py", line 69, in apply_model_uncond_cleanup_wrapper return orig_apply_model(self, *args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\model_base.py", line 142, in apply_model model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\custom_nodes\FreeU_Advanced\nodes.py", line 176, in __temp__forward h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) File "E:\ComfyUI-aki-v1.3\comfy\ldm\modules\diffusionmodules\openaimodel.py", line 50, in forward_timestep_embed x = layer(x) File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\comfy\ops.py", line 97, in forward return super().forward(*args, **kwargs) File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias) File "E:\ComfyUI-aki-v1.3\python\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride,

``` import torch import torch.nn as nn from skimage.segmentation import active_contour import numpy as np from torchvision.ops import FeaturePyramidNetwork from torchvision.models import resnet50 import os os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' class ImageSegmentationModel(nn.Module): def __init__(self): super(ImageSegmentationModel,self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(1,1,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(1, 1, kernel_size=3, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(),nn.Conv2d(1,1,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(1,1,kernel_size=3,stride=2) ) #使用resnet作为特征提取器 self.resnet = resnet50(pretrained=True) #移除resnet最后一层全连接层 self.resnet = nn.Sequential(*list(self.resnet.children())[:-2]) #修改,调整fpn输入通道 self.fpn = FeaturePyramidNetwork([256,512,1024,2048],256) def preprocess(self,x): #将输入图像尺寸调整为511×511,使用双线性插值法 x = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) #将输入图像转换为灰度图像,通过对通道维度求均值 x = torch.mean(x,dim=1,keepdim=True) #将张量转换为numpy数组,以便使用skimage库进行处理 x_np = x.detach().cpu().numpy() segmented = [] #对每个样本进行chan—vese分割 for i in range(x_np.shape[0]): img = x_np[i,0] #初始化活动轮廓的点 init =np.array([[img.shape[1]-1,0],[img.shape[1]-1,img.shape[0]-1],[0,img.shape[0]-1,],[0,0]]) #使用c-v函数进行分割 snake = active_contour(img,init,alpha=0.015,beta=10,gamma=0.001) #初始化分割结果矩阵 seg = np.zeros_like(img) from skimage.draw import polygon #绘制多边形区域(有无绘制必要?) rr, cc = polygon(snake[:,1],snake[:,0],seg.shape) #将多边形区域标记为1 seg[rr, cc] = 1 segmented.append(seg) #将分割结果转换为numpy数组 segmented = np.array(segmented) #将数组转换为张量,并添加通道维度 segmented = torch.from_numpy(segmented).unsqueeze(1).float().to(x.device) return segmented def forward(self,x): y = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) #对输入图像进行预处理 x = self.preprocess(x) #通过卷积层序列进行特征提取 conv_output = self.conv_layers(x) #通过resnet50提取特征 resnet_features = self.resnet(y) #构建fpn输入特征字典 fpn_input = { 'feat1': resnet_features[0], 'feat2': resnet_features[1], 'feat3': resnet_features[2], 'feat4': resnet_features[3] } #通过fpn网络 fpn_output = self.fpn(fpn_input) #最终卷积操作 fpn_output_upsampled = torch.nn.functional.interpolate(fpn_output['feat1'], size=(511, 511), mode='bilinear', align_corners=False) final_output = nn.functional.conv2d(fpn_output_upsampled,conv_output,stride=1,paddong=0) return final_output```运行上述代码时发生报错:RuntimeError: Given groups=1, weight of size [256, 1024, 1, 1], expected input[1, 2048, 16, 16] to have 1024 channels, but got 2048 channels instead。该怎么解决?
最新发布
03-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值