本文以全国大学生数学竞赛中的考题作为例题,对定积分定义式的应用进行详细解释。
一、定积分的定义式
设f(x)在[a,b]上有定义,将[a,b]分成n个小区间,其中,第i个小区间为[Xi-1,Xi],则小区间长度为ΔXi = (Xi - Xi-1),设 ζ i为第i个小区间内任意一点,则小区间长度为ΔXi = ( ζ i - ζ i-1),该值趋于0。此时定积分的定义式可表达为:
∫ a^b f(x) dx = lim(n->∞)∑(i=1 to n) f(ζi) ΔXi
具体解释:将曲线与x轴围成的区域分为n个矩形(n->∞),ΔXi是底长,f(ζi)是高,则右式相当于对n个矩形面积求和并取极限,与左式相等(左式为在[a,b]区间上对f(x)求积分,本质上也是无穷个面积之和)。
二、例题
该例题的解答方式运用了积分中值定理、拉格朗日中值定理、定积分定义式的转化,综合性较强;