定积分定义式的详细解释及应用

本文以全国大学生数学竞赛中的考题作为例题,对定积分定义式的应用进行详细解释。

一、定积分的定义式

设f(x)在[a,b]上有定义,将[a,b]分成n个小区间,其中,第i个小区间为[Xi-1,Xi],则小区间长度为ΔXi = (Xi - Xi-1),设 ζ i为第i个小区间内任意一点,则小区间长度为ΔXi = ( ζ i -  ζ i-1),该值趋于0。此时定积分的定义式可表达为:

∫ a^b f(x) dx = lim(n->∞)∑(i=1 to n) f(ζi) ΔXi

具体解释:将曲线与x轴围成的区域分为n个矩形(n->∞),ΔXi是底长,f(ζi)是高,则右式相当于对n个矩形面积求和并取极限,与左式相等(左式为在[a,b]区间上对f(x)求积分,本质上也是无穷个面积之和)。

二、例题

该例题的解答方式运用了积分中值定理、拉格朗日中值定理、定积分定义式的转化,综合性较强;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值