caffe Python API 之上卷积层(Deconvolution)

对于convolution:

output = (input + 2 * p  - k)  / s + 1;

对于deconvolution:

output = (input - 1) * s + k - 2 * p;

net.deconv = caffe.layers.Deconvolution(
    net.conv1,
    param={"lr_mult": 1, "decay_mult": 1},
    convolution_param=dict(
        num_output=10,
        stride=32,
        kernel_size=64,
        bias_term=False,
        weight_filler=dict(type="xavier" ),
        bias_filler=dict(type='constant', value=0))
)

输出:
layer {
  name: "deconv"
  type: "Deconvolution"
  bottom: "conv1"
  top: "deconv"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  convolution_param {
    num_output: 10
    bias_term: false
    kernel_size: 64
    stride: 32
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }

 

转载于:https://www.cnblogs.com/houjun/p/9913325.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值