1.卷积层,卷积核,通道概念及作用
卷积层:又称滤波器(filter)或者内核(kernel),TensorFlow文档中称之为滤波器(filter)。用于对输入的图像结构进行特征提取。
卷积核:同上卷积层。
通道:指滤波器的个数。输出的通道层数只与当前滤波器的通道个数有关。
其中输入层,黑白图像的通道数为1,彩色图像的通道个数为3(RGB)
2.卷积过程
如图一(源于网络)所示(彩色图像为例):
如图所示,输入层的图像为6*6*3,3表示RGB各一层,现在使用的是通道数为2 ,滤波器为2的卷积层去进行卷积操作。
解释:
(1)滤波器的个数为什么等于2:因为图中黄色部份为滤波器所以为2
(2)为什么滤波器是3*3*3:前两个参数表示滤波器的宽高为自己设定,这里假设为3*3,最有一个参数为输入数据的通道数,由于输入数据