CNN卷积中卷积层,卷积核,通道概念及卷积过程详解

1.卷积层,卷积核,通道概念及作用

卷积层:又称滤波器(filter)或者内核(kernel),TensorFlow文档中称之为滤波器(filter)。用于对输入的图像结构进行特征提取。

卷积核:同上卷积层。

通道:指滤波器的个数。输出的通道层数只与当前滤波器的通道个数有关。

其中输入层,黑白图像的通道数为1,彩色图像的通道个数为3(RGB)

2.卷积过程

如图一(源于网络)所示(彩色图像为例):

如图所示,输入层的图像为6*6*3,3表示RGB各一层,现在使用的是通道数为2 ,滤波器为2的卷积层去进行卷积操作。

解释:

(1)滤波器的个数为什么等于2:因为图中黄色部份为滤波器所以为2

(2)为什么滤波器是3*3*3:前两个参数表示滤波器的宽高为自己设定,这里假设为3*3,最有一个参数为输入数据的通道数,由于输入数据

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值