- 博客(6)
- 收藏
- 关注
原创 关于傅里叶变化的记录
STFT主要的是在傅里叶变换的基础上进行的改进,由于信号不仅非周期还非平稳,sftf原理就是在一个小的时间范围内看成是平稳信号,将信号通过窗函数截取出来进行分析。这里的e-jwt是一个正交基的组合,可以看出像一个滤波器,依照正交性,假如有w的信号就会有值,没有就为0,可以摘出来。可以从上面看到,恰好,欸,三角函数cos、sin也有这个性质欸,那是不是任意一个周期信号也能被这些三角函数给表示?假如现在有个信号,是非周期的,可以看成是周期无穷大的信号,里面有很多信号可以摘出来,当然还离不开欧拉公式。
2023-08-11 10:47:31 149 1
原创 关于sum的axis的坑
一般的思维是axis=0 的时候不是按行求和嘛 ,怎么这里是按列求和,其实这里是相反的,axis=0,意思是把0维消掉,即size(10,10)----> (1,10),即是按列求和的亚子,唔,我记得好像李沐在哪里说过,忘记了,反正大概是这个意思把,希望有所帮助~这个坑俺估计是小白要踩的,因为我这一枚小白就理解有误的,基础没打好吧可能,在这给同样疑惑的小伙伴写下,也是记录自己的错误,以免再踩。在计算一个矩阵的和的时候。
2023-06-01 10:52:59 101
原创 关于tensor维度的解释
tensor的3维的,其实就是二维的堆叠起来,像一片片饺子皮堆起来就是三维,求体积的时候咱们也是先求的底面积然后求高相乘是吧,只不过这里是一个离散的,那个是连续的罢了。看到tensor那么多[]时候,感觉好迷糊,然后写了代码去验证一下,仅限三维,思维的话emmm,还没怎么遇到,先不管,后面看到再去理解吧。可以看出来,a和b的区别就是在外面加个[],就是第一个维度维1,只有一片,而c的第一个维度为3,有三篇(1,4)的二维矩阵组成。感觉好抽象,就去自己验证了一下,随便自己写的,以免以后又糊涂了。
2023-04-12 15:00:23 339
原创 关于nn.embedding.weight和nn.embedding.weight.data的区别
然后的话可以看到除了梯度的T or F是没有什么区别的,当设置with torch.no_grad():后可以直接weight.uniform_()的。jeiguopwei在看代码的时候发现这里很混乱就自己敲了看看什么区别,这是我自己武断总结的,希望能帮助大家,有错误希望能指出来~nn.Embedding这个函数就不多说了,可以看这个。乱写的,不对请告诉,正在自学ing,孩子真的在努力学了。可以看到第一个自动设置了梯度为Ture,
2023-04-12 14:46:05 1039 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人