1. 红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
2. 红黑树的性质
- 每个结点不是红色就是黑色
- 根节点是黑色的
- 如果一个节点是红色的,则它的两个孩子结点是黑色的 (不能有连续的两个红色结点)
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
3. 红黑树节点的定义
在节点的定义中,为什么要将节点的默认颜色给成红色的?
非要选择破坏性质3和4里面的一个的时候,选择破坏性质3(一个红结点他的两个孩子结点是黑色的),这个条件相对来说更加好控制一些,确保每条路径上的黑色结点数都是相同的这个条件并不好控制。
enum Color
{
RED,
BLACK
};
template<class K,class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
enum Color _col;
//非要选择破坏性质3和4里面的一个的时候,选择3比较好--- 一个红结点他的两个孩子结点是黑色的
RBTreeNode(const pair<K,V>& kv)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _col(RED)
, _kv(kv)
{}
};
4. 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
- 按照二叉搜索的树规则插入新节点
- 检测新节点插入后,红黑树的性质是否造到破坏
插入新节点按照大框架其实就分为了2种情况:
叔叔结点存在且为红色
叔叔结点不存在或者存在且为黑色
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一
:cur为红,p为红,g为黑,u存在且为红
p和u变黑,g变红
这样的话,就没有连续的红结点了,这棵子树每条路径黑结点的数量不改变。- 如果g是根结点,调整完成后,需要将g改为黑色。
- 如果g是子树,g一定有双亲,且g的双亲如果是红色,需要继续向上调整
情况二
:cur为红,p为红,g为黑,u不存在/u存在且为黑
u的情况分为两种:
- 如果u结点不存在,则cur一定是新插入结点,因为如果cur不是新插入结点,则cur和p一定有一个结点的颜色是黑色,就不满足性质四:每条路径黑色节点个数相同。
①右单旋
②左单旋
- 如果u结点存在,则其一定是黑色,那么cur结点原来的颜色一定是黑色。
总结:
- p为g的左孩子,cur为p的左孩子,则进行右单旋转;
- p为g的右孩子,cur为p的右孩子,则进行左单旋转
- p、g变色–p变黑,g变红
u的情况分为两种:
- 如果u结点不存在,则cur一定是新插入结点,因为如果cur不是新插入结点,则cur和p一定有一个结点的颜色是黑色,就不满足性质四:每条路径黑色节点个数相同。
- 如果u结点存在,则其一定是黑色,那么cur结点原来的颜色一定是黑色
③先左单旋再右单旋
④先右单旋再左单旋
总结:
- p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,然后在以cur做右单旋;
- p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,然后在以cur做左单旋;
- g变为红色,cur变为黑色
pair<Node*,bool> Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return make_pair(_root, true);
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(cur, false);
}
}
cur = new Node(kv);//RED
//此时说明已经找到了位置,还需要进行插入
if (parent->_kv.first < kv.first)
{
//说明此时应该链接在父节点的右边
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
Node* newnode = cur;
//因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整
while (parent && parent->_col == RED) //cur是新增的肯定存在parent,但是如果他是往上跳了一层的,就不会有parent了
{
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
//情况一:叔叔存在且为红色,第一种情况是不旋转的,只是单纯的变一个色
if (uncle && uncle->_col == RED)
{
//变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else //情况2+3 u不存在或者存在且为黑
{
// g
// p
// c
if (cur == parent->_left)//右单旋
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
//此时就是一个双旋了
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else //grandfather->_right == parent
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
uncle->_col = parent->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;//这里再不要忘记,也有可能迭代的要往上继续处理
}
else
{
//叔叔不存在或者叔叔的颜色为黑
// g
// p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
grandfather->_col = RED; //
parent->_col = BLACK;
}
// g
// p
// c
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;//始终把根变为黑色
return make_pair(newnode, true);
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
//但是subLR有可能是空的,那么下面这个代码就会崩
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
//此时还需要最后一步,把根结点换掉
if (parent == _root)
{
_root = subL;
_root->_parent = nullptr;
}
else
{
//此时你需要把30这个结点连接住,但是应该连接在哪一边还需要进行判断
if (parentParent->_left == parent)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;//先保存下来,因为后面会改变这个,就找不到最开始的父节点了
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
//作为子树的一部分
if (parentParent->_left == parent)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
5. 红黑树的验证
红黑树的检测分为两步:
- 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
- 检测其是否满足红黑树的性质(当然也可以去查看是否满足最长路径不会超过最短路径的2倍,但是这个条件检查起来其实是相对困难的,所以这里选择去查看是否这棵树有满足性质)
void _Inorder(Node* root)
{
if (root == nullptr)
return;
_Inorder(root->_left);
cout << root->_kv.first << " ";
_Inorder(root->_right);
}
void Inorder()
{
_Inorder(_root);
cout << endl;
}
bool _CheckRedCol(Node* root)
{
if (root == nullptr)
return true;
if (root->_col == RED)
{
Node* parent = root->_parent;
if (parent->_col == RED)
{
cout << "违反规则3:存在连续的红结点" << endl;
return false;
}
}
return _CheckRedCol(root->_left) && _CheckRedCol(root->_right);
}
//检查每条路径上的黑色节点数是否相同
bool _CheckBlackNum(Node* root,int blackNum,int trueNum)
{
if (root == nullptr)
{
return trueNum == blackNum;
}
if (root->_col == BLACK)
{
blackNum++;
}
return _CheckBlackNum(root->_left, blackNum,trueNum) && _CheckBlackNum(root->_right, blackNum,trueNum);
}
//不要考虑去检查最长路径是否不超过最短路径的两倍,这个方法麻烦
//而是从反向进行思考,检查他的性质是否都满足
bool IsBalance()
{
if (_root && _root->_col == RED)
{
cout << "违反规则1:根结点是红色的" << endl;
return false;
}
int trueNum = 0; //拿到真实路径上面的结点值,然后和算出来的进行比较
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++trueNum;
}
cur = cur->_left;
}
int blackNum = 0;
return _CheckRedCol(_root) && _CheckBlackNum(_root, blackNum,trueNum); //这样就知道是否满足了红黑树的所有性质
}
6. 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(logN)(以2为底),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,(AVL树是一个严格平衡的二叉搜索树
,而红黑树只是一个近似平衡的二叉搜索树
,但是在效率方面,从计算机方面来看两者几乎是相同
)而且红黑树实现比较简单,所以实际运用中红黑树更多。
7. 完整红黑树模拟实现代码
#include<iostream>
using namespace std;
enum Color
{
RED,
BLACK
};
template<class K,class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
enum Color _col;
//非要选择破坏性质3和4里面的一个的时候,选择3比较好--- 一个红结点他的两个孩子结点是黑色的
RBTreeNode(const pair<K,V>& kv)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _col(RED)
, _kv(kv)
{}
};
template<class K,class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
pair<Node*,bool> Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return make_pair(_root, true);
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(cur, false);
}
}
cur = new Node(kv);//RED
//此时说明已经找到了位置,还需要进行插入
if (parent->_kv.first < kv.first)
{
//说明此时应该链接在父节点的右边
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
Node* newnode = cur;
//因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整
while (parent && parent->_col == RED) //cur是新增的肯定存在parent,但是如果他是往上跳了一层的,就不会有parent了
{
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
//情况一:叔叔存在且为红色,第一种情况是不旋转的,只是单纯的变一个色
if (uncle && uncle->_col == RED)
{
//变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else //情况2+3 u不存在或者存在且为黑
{
// g
// p
// c
if (cur == parent->_left)//右单旋
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
//此时就是一个双旋了
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else //grandfather->_right == parent
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
uncle->_col = parent->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;//这里再不要忘记,也有可能迭代的要往上继续处理
}
else
{
//叔叔不存在或者叔叔的颜色为黑
// g
// p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
grandfather->_col = RED; //
parent->_col = BLACK;
}
// g
// p
// c
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;//始终把根变为黑色
return make_pair(newnode, true);
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
//但是subLR有可能是空的,那么下面这个代码就会崩
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
//此时还需要最后一步,把根结点换掉
if (parent == _root)
{
_root = subL;
_root->_parent = nullptr;
}
else
{
//此时你需要把30这个结点连接住,但是应该连接在哪一边还需要进行判断
if (parentParent->_left == parent)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;//先保存下来,因为后面会改变这个,就找不到最开始的父节点了
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
//作为子树的一部分
if (parentParent->_left == parent)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
void _Inorder(Node* root)
{
if (root == nullptr)
return;
_Inorder(root->_left);
cout << root->_kv.first << " ";
_Inorder(root->_right);
}
void Inorder()
{
_Inorder(_root);
cout << endl;
}
bool _CheckRedCol(Node* root)
{
if (root == nullptr)
return true;
if (root->_col == RED)
{
Node* parent = root->_parent;
if (parent->_col == RED)
{
cout << "违反规则3:存在连续的红结点" << endl;
return false;
}
}
return _CheckRedCol(root->_left) && _CheckRedCol(root->_right);//其实拆分为了根,左子树,右子树的问题
}
bool _CheckBlackNum(Node* root,int blackNum,int trueNum)
{
if (root == nullptr)
{
return trueNum == blackNum;//算出来的和真实的进行比较
}
if (root->_col == BLACK)
{
blackNum++;
}
return _CheckBlackNum(root->_left, blackNum,trueNum) && _CheckBlackNum(root->_right, blackNum,trueNum);
}
//不要考虑去检查最长路径是否不超过最短路径的两倍,这个方法麻烦
//而是从反向进行思考,检查他的性质是否都满足
bool IsBalance()
{
if (_root && _root->_col == RED)
{
cout << "违反规则1:根结点是红色的" << endl;
return false;
}
int trueNum = 0; //拿到真实路径上面的结点值,然后和算出来的进行比较
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++trueNum;
}
cur = cur->_left;
}
int blackNum = 0;
return _CheckRedCol(_root) && _CheckBlackNum(_root, blackNum,trueNum); //这样就知道是否满足了红黑树的所有性质
}
private:
Node* _root = nullptr;
};
main.c
#include"RBTree.hpp"
void TestRBTree()
{
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
RBTree<int, int> t;
for (auto e : a)
{
t.Insert(make_pair(e, e));
}
t.Inorder();
cout << t.IsBalance() << endl;
}
int main()
{
TestRBTree();
}