数据结构---红黑树

1. 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

在这里插入图片描述

2. 红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 (不能有连续的两个红色结点)
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

3. 红黑树节点的定义

在节点的定义中,为什么要将节点的默认颜色给成红色的?

非要选择破坏性质3和4里面的一个的时候,选择破坏性质3(一个红结点他的两个孩子结点是黑色的),这个条件相对来说更加好控制一些,确保每条路径上的黑色结点数都是相同的这个条件并不好控制。

enum Color
{
	RED,
	BLACK
};

template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;


	enum Color _col;

	//非要选择破坏性质3和4里面的一个的时候,选择3比较好---  一个红结点他的两个孩子结点是黑色的
	RBTreeNode(const pair<K,V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
		, _kv(kv)
	{}
};

4. 红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点
  2. 检测新节点插入后,红黑树的性质是否造到破坏

插入新节点按照大框架其实就分为了2种情况:

  1. 叔叔结点存在且为红色
  2. 叔叔结点不存在或者存在且为黑色

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一cur为红,p为红,g为黑,u存在且为红
在这里插入图片描述

  • p和u变黑,g变红这样的话,就没有连续的红结点了,这棵子树每条路径黑结点的数量不改变。
  • 如果g是根结点,调整完成后,需要将g改为黑色
  • 如果g是子树,g一定有双亲,且g的双亲如果是红色,需要继续向上调整

情况二cur为红,p为红,g为黑,u不存在/u存在且为黑
在这里插入图片描述

u的情况分为两种:

  1. 如果u结点不存在,则cur一定是新插入结点,因为如果cur不是新插入结点,则cur和p一定有一个结点的颜色是黑色,就不满足性质四:每条路径黑色节点个数相同。

①右单旋
在这里插入图片描述

②左单旋
在这里插入图片描述

  1. 如果u结点存在,则其一定是黑色,那么cur结点原来的颜色一定是黑色。
    在这里插入图片描述

总结

  • p为g的左孩子,cur为p的左孩子,则进行右单旋转;
  • p为g的右孩子,cur为p的右孩子,则进行左单旋转
  • p、g变色–p变黑,g变红

u的情况分为两种:

  1. 如果u结点不存在,则cur一定是新插入结点,因为如果cur不是新插入结点,则cur和p一定有一个结点的颜色是黑色,就不满足性质四:每条路径黑色节点个数相同。

在这里插入图片描述

  1. 如果u结点存在,则其一定是黑色,那么cur结点原来的颜色一定是黑色

③先左单旋再右单旋
在这里插入图片描述

④先右单旋再左单旋
在这里插入图片描述

总结:

  • p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,然后在以cur做右单旋;
  • p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,然后在以cur做左单旋;
  • g变为红色,cur变为黑色
	pair<Node*,bool> Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return make_pair(_root, true);
		}
		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(cur, false);
			}
		}

		cur = new Node(kv);//RED
		//此时说明已经找到了位置,还需要进行插入
		if (parent->_kv.first < kv.first)
		{
			//说明此时应该链接在父节点的右边
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		Node* newnode = cur;
		//因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整
		while (parent && parent->_col == RED) //cur是新增的肯定存在parent,但是如果他是往上跳了一层的,就不会有parent了
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				//情况一:叔叔存在且为红色,第一种情况是不旋转的,只是单纯的变一个色
				if (uncle && uncle->_col == RED)
				{
					//变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else //情况2+3 u不存在或者存在且为黑 
				{
					//			g
					//       p
					//    c
					if (cur == parent->_left)//右单旋
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//此时就是一个双旋了
						//		g
						//    p
						//      c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else //grandfather->_right == parent
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;//这里再不要忘记,也有可能迭代的要往上继续处理
				}
				else
				{
					//叔叔不存在或者叔叔的颜色为黑
					//       g
					//			p
					//			   c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						grandfather->_col = RED; //
						parent->_col = BLACK;
					}
					//			g
					//			  p
					//			c
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;//始终把根变为黑色
		return make_pair(newnode, true);
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		//但是subLR有可能是空的,那么下面这个代码就会崩
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;


		//此时还需要最后一步,把根结点换掉
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			//此时你需要把30这个结点连接住,但是应该连接在哪一边还需要进行判断
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;//先保存下来,因为后面会改变这个,就找不到最开始的父节点了

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			//作为子树的一部分
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

5. 红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质(当然也可以去查看是否满足最长路径不会超过最短路径的2倍,但是这个条件检查起来其实是相对困难的,所以这里选择去查看是否这棵树有满足性质)
	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;
		_Inorder(root->_left);
		cout << root->_kv.first << " ";
		_Inorder(root->_right);
	}

	void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}

	bool _CheckRedCol(Node* root)
	{
		if (root == nullptr)
			return true;
		if (root->_col == RED)
		{
			Node* parent = root->_parent;
			if (parent->_col == RED)
			{
				cout << "违反规则3:存在连续的红结点" << endl;
				return false;
			}
		}
		return _CheckRedCol(root->_left) && _CheckRedCol(root->_right);
	}

	//检查每条路径上的黑色节点数是否相同
	bool _CheckBlackNum(Node* root,int blackNum,int trueNum)
	{
		if (root == nullptr)
		{
			return trueNum == blackNum;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return _CheckBlackNum(root->_left, blackNum,trueNum) && _CheckBlackNum(root->_right, blackNum,trueNum);
	}
	//不要考虑去检查最长路径是否不超过最短路径的两倍,这个方法麻烦
	//而是从反向进行思考,检查他的性质是否都满足
	bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			cout << "违反规则1:根结点是红色的" << endl;
			return false;
		}

		int trueNum = 0; //拿到真实路径上面的结点值,然后和算出来的进行比较
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++trueNum;
			}
			cur = cur->_left;
		}
		int blackNum = 0;
		return _CheckRedCol(_root) && _CheckBlackNum(_root, blackNum,trueNum); //这样就知道是否满足了红黑树的所有性质
	}

6. 红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(logN)(以2为底),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,(AVL树是一个严格平衡的二叉搜索树,而红黑树只是一个近似平衡的二叉搜索树,但是在效率方面,从计算机方面来看两者几乎是相同)而且红黑树实现比较简单,所以实际运用中红黑树更多。

7. 完整红黑树模拟实现代码

#include<iostream>
using namespace std;

enum Color
{
	RED,
	BLACK
};

template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;


	enum Color _col;

	//非要选择破坏性质3和4里面的一个的时候,选择3比较好---  一个红结点他的两个孩子结点是黑色的
	RBTreeNode(const pair<K,V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
		, _kv(kv)
	{}
};

template<class K,class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	pair<Node*,bool> Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return make_pair(_root, true);
		}
		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(cur, false);
			}
		}

		cur = new Node(kv);//RED
		//此时说明已经找到了位置,还需要进行插入
		if (parent->_kv.first < kv.first)
		{
			//说明此时应该链接在父节点的右边
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		Node* newnode = cur;
		//因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整
		while (parent && parent->_col == RED) //cur是新增的肯定存在parent,但是如果他是往上跳了一层的,就不会有parent了
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				//情况一:叔叔存在且为红色,第一种情况是不旋转的,只是单纯的变一个色
				if (uncle && uncle->_col == RED)
				{
					//变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else //情况2+3 u不存在或者存在且为黑 
				{
					//			g
					//       p
					//    c
					if (cur == parent->_left)//右单旋
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//此时就是一个双旋了
						//		g
						//    p
						//      c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else //grandfather->_right == parent
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;//这里再不要忘记,也有可能迭代的要往上继续处理
				}
				else
				{
					//叔叔不存在或者叔叔的颜色为黑
					//       g
					//			p
					//			   c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						grandfather->_col = RED; //
						parent->_col = BLACK;
					}
					//			g
					//			  p
					//			c
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;//始终把根变为黑色
		return make_pair(newnode, true);
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		//但是subLR有可能是空的,那么下面这个代码就会崩
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;


		//此时还需要最后一步,把根结点换掉
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			//此时你需要把30这个结点连接住,但是应该连接在哪一边还需要进行判断
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;//先保存下来,因为后面会改变这个,就找不到最开始的父节点了

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			//作为子树的一部分
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;
		_Inorder(root->_left);
		cout << root->_kv.first << " ";
		_Inorder(root->_right);
	}

	void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}

	bool _CheckRedCol(Node* root)
	{
		if (root == nullptr)
			return true;
		if (root->_col == RED)
		{
			Node* parent = root->_parent;
			if (parent->_col == RED)
			{
				cout << "违反规则3:存在连续的红结点" << endl;
				return false;
			}
		}
		return _CheckRedCol(root->_left) && _CheckRedCol(root->_right);//其实拆分为了根,左子树,右子树的问题
	}

	bool _CheckBlackNum(Node* root,int blackNum,int trueNum)
	{
		if (root == nullptr)
		{
			return trueNum == blackNum;//算出来的和真实的进行比较
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return _CheckBlackNum(root->_left, blackNum,trueNum) && _CheckBlackNum(root->_right, blackNum,trueNum);
	}
	//不要考虑去检查最长路径是否不超过最短路径的两倍,这个方法麻烦
	//而是从反向进行思考,检查他的性质是否都满足
	bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			cout << "违反规则1:根结点是红色的" << endl;
			return false;
		}

		int trueNum = 0; //拿到真实路径上面的结点值,然后和算出来的进行比较
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++trueNum;
			}
			cur = cur->_left;
		}
		int blackNum = 0;
		return _CheckRedCol(_root) && _CheckBlackNum(_root, blackNum,trueNum); //这样就知道是否满足了红黑树的所有性质
	}

private:
	Node* _root = nullptr;
};

main.c

#include"RBTree.hpp"

void TestRBTree()
{
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	RBTree<int, int> t;

	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}

	t.Inorder();
	cout << t.IsBalance() << endl;
}

int main()
{
	TestRBTree();
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值