平面运动的简要分析

 

        设运动参考系的原点O_{1}相对于静止参考系的原点O的矢径为\vec{r}_{0},质点P在运动参考系中的矢径为\vec{r}_{1},矢量用x+yi的复数形式表示。设运动参考系相对于其原点O_{1}沿逆时针方向转过的角度为\varphi,则质点P在静止参考系中的矢径\vec{r}=\vec{r}_{0}+\vec{r}_{1}e^{\varphi i}。对等式两端关于时间t求导

\frac{d\vec{r}}{dt}=\frac{d\vec{r}_{0}}{dt}+\frac{d\vec{r}_{1}}{dt}e^{\varphi i}+ i\frac{d\varphi }{dt}\vec{r}_{1}e^{\varphi i}

        令

\vec{v}=\frac{d\vec{r}}{dt}\\ \vec{v}_{0}=\frac{d\vec{r}_{0}}{dt}\\ \vec{v}_{1}=\frac{d\vec{r}_{1}}{dt}\\ \omega =\frac{d\varphi }{dt}

        则

\vec{v}=\vec{v}_{0}+(\vec{v}_{1}+ i\omega\vec{r}_{1})e^{\varphi i}

        继续对等式两端关于时间t求导

\frac{d\vec{v}}{dt}=\frac{d\vec{v}_{0}}{dt}+\left ( \frac{d\vec{v}_{1}}{dt}+i\frac{d\omega }{dt}\vec{r}_{1}+2i\omega \vec{v}_{1}-\omega ^{2}\vec{r}_{1} \right )e^{\varphi i}

        令

\vec{a}=\frac{d\vec{v}}{dt}\\ \vec{a}_{0}=\frac{d\vec{v}_{0}}{dt}\\ \vec{a}_{1}=\frac{d\vec{v}_{1}}{dt}\\ \alpha =\frac{d\omega }{dt}

        则

\vec{a}=\vec{a}_{0}+\left ( \vec{a}_{1}+i\alpha \vec{r}_{1}+2i\omega \vec{v}_{1}-\omega ^{2}\vec{r}_{1} \right )e^{\varphi i}

        例如,当运动参考系的原点O_{1}静止,运动参考系以角速度\omega _{c}O_{1}作匀速转动,质点P在运动参考系中以速度\vec{v}_{c}沿径向作匀速直线运动时(即等速螺线,又称阿基米德螺线),代入

\begin{matrix} \vec{v}_{0}\equiv \vec{0}&& \vec{a}_{0}\equiv \vec{0}\\ \vec{v}_{1}\equiv \vec{v}_{c}&& \vec{a}_{1}\equiv \vec{0}\\ \omega \equiv \omega_{c}&& \alpha \equiv 0 \end{matrix}

        可得

\vec{a}=\left ( 2i\omega_{c}\vec{v}_{c}-\omega_{c}^{2}\vec{r}_{1} \right )e^{\varphi i}

        其中e^{\varphi i}是由于运动参考系的旋转产生的旋转项,这意味着为了让质点P按照上述方式运动,必须对质点P施加力,施加的合力的大小为定值,方向需要随运动参考系的旋转一同变化,这个合力在运动参考系中对应的加速度的表达式即为

\vec{a}^{*}=2i\omega_{c}\vec{v}_{c}-\omega_{c}^{2}\vec{r}_{1}

        其中指向点O_{1}的向心加速度为

\vec{a}_{n}^{*}=-\omega_{c}^{2}\vec{r}_{1}

        另一个加速度分量为

\vec{a}_{\tau }^{*}=\vec{a}^{*}-\vec{a}_{n}^{*}=2i\omega _{c}\vec{v}_{c}

        其中i=e^{\frac{\pi }{2}i}表示逆时针旋转90°,而\vec{v}_{c}//\vec{r}_{1},故\vec{a}_{\tau }^{*}\perp \vec{r}_{1},即\vec{a}_{\tau }^{*}为切向加速度,方向始终与矢径\vec{r}_{1}垂直,大小为2\omega _{c}{v}_{c},也称为科氏加速度。

        现在再回到下式的讨论

\vec{a}=\vec{a}_{0}+\left ( \vec{a}_{1}+i\alpha \vec{r}_{1}+2i\omega \vec{v}_{1}-\omega ^{2}\vec{r}_{1} \right )e^{\varphi i}

        将\vec{a}_{1}向平行于\vec{r}_{1}和垂直于\vec{r}_{1}的方向分解

\vec{a}_{1}=\vec{a}_{n}^{1}+\vec{a}_{\tau}^{1}

        其中\vec{a}_{n}^{1}//\vec{r}_{1}\vec{a}_{\tau }^{1}\perp \vec{r}_{1}。同理将\vec{v}_{1}向平行于\vec{r}_{1}和垂直于\vec{r}_{1}的方向分解

\vec{v}_{1}=\vec{v}_{n}^{1}+\vec{v}_{\tau}^{1}

        其中\vec{v}_{n}^{1}//\vec{r}_{1}\vec{v}_{\tau }^{1}\perp \vec{r}_{1}。通过整理可得

\vec{a}=\vec{a}_{0}+\left ( \vec{a}_{n}^{1}+2i\omega \vec{v}_{\tau }^{1}-\omega ^{2}\vec{r}_{1} \right)e^{\varphi i}+\left ( \vec{a}_{\tau }^{1}+2i\omega \vec{v}_{n}^{1}+ i\alpha \vec{r}_{1} \right )e^{\varphi i}

        其中第一个括号中的项为平行于\vec{r}_{1}的分量,第二个括号中的项为垂直于\vec{r}_{1}的分量。可以看到,当\vec{v}_{1}有垂直于\vec{r}_{1}方向的分量\vec{v}_{\tau }^{1}时,在沿\vec{r}_{1}方向的向心加速度中,也会存在一个二倍项2 \omega v_{\tau }^{1}。当然,应当注意的是,上文所提到的向心加速度和切向加速度并非通常所说的含义,这里的“心”是运动参考系的原点O_{1},并非质点轨迹的曲率中心(通常所说的向心加速度应当是指向曲率中心,或者说垂直于速度方向的)。

        进而很自然地会产生这样一个问题:怎样的平面运动会使得其轨迹的曲率中心和运动参考系的原点重合?答案是显然的:任何平面运动只要以其轨迹的曲率中心作为运动参考系的原点都可以满足要求,因此如何求运动轨迹的曲率中心,就成为一个新的问题。当然这里并不是要讨论使用微积分的方法求解,而是从运动学的角度考虑:

        首先考虑如何在静止坐标系中表示质点的运动轨迹,在平面直角坐标系中表达一条曲线的方法有很多,这里使用如下方法表达:

        设质点的轨迹起点为A,质点P运动的路程(曲线AP的长度)为s,质点P的速度方向的单位向量(即曲线的单位切向量)为

\vec{\tau }(s)=u+hi

        注:u^{2}+h^{2}\equiv 1。为了方便起见,令质点P的速度大小恒为v(从而质点没有切向加速度,向心加速度就等于加速度),则质点在s处的速度为v\vec{\tau }(s),加速度为

\vec{a}(s)=v\frac{d\vec{\tau }(s)}{dt}=v\frac{d\vec{\tau }(s)}{ds}\frac{ds}{dt}= v^{2}\frac{d\vec{\tau }(s)}{ds}

        因此质点在s处的向心加速度为

\left |\vec{a}_{n}(s) \right |= v^{2}\left |\frac{d\vec{\tau }(s)}{ds} \right |=\frac{v^{2}}{\rho }

        故

K=\frac{1}{\rho }=\left |\frac{d\vec{\tau }(s)}{ds} \right |

        其中\rho为曲率半径,K为曲率。为了验证,可以根据上式来导出高等数学中的曲率公式:

        设曲线的方程为y=y(x),起点A的横坐标为x_{0},质点P的横坐标为x,则

s=\int_{x_{0}}^{x}\sqrt{1+[y{}'(x)]^{2}}dx

u=\frac{1}{\sqrt{1+[y{}'(x)]^{2}}}

h=-\sqrt{1-u^{2}} \; \; \; or \; \; \; \sqrt{1-u^{2}}

\frac{d\vec{\tau }(s)}{ds}=\frac{du}{ds}+\frac{dh}{ds}i

\left |\frac{d\vec{\tau }(s)}{ds} \right |=\sqrt{\left ( \frac{du}{ds} \right )^{2}+\left ( \frac{dh}{ds} \right )^{2}}=\left |\frac{du}{ds} \right |\sqrt{1+\left ( \frac{dh}{du} \right )^{2}}=\frac{\left |\frac{du}{ds} \right |}{\sqrt{1-u^{2}}}

        其中

du=-\frac{y{}'(x)y{}''(x)}{\left ( 1+[y{}'(x)]^{2} \right )^{\frac{3}{2}}}dx

ds=\sqrt{1+[y{}'(x)]^{2}}dx

        整理得

K=\left |\frac{d\vec{\tau }(s)}{ds} \right |=\frac{\left |y{}''(x) \right |}{\left ( 1+[y{}'(x)]^{2} \right )^{\frac{3}{2}}}

        这与高等数学中的曲率公式相同。

        最后请思考:在上文的例子中,若保持\vec{v}_{1}\equiv \vec{v}_{c}\omega \equiv \omega_{c}的条件不变,则怎样的\vec{v}_{0}可以使运动参考系的原点O_{1}与质点轨迹的曲率中心始终重合。

        要满足这个要求,需要从速度的方向和大小两方面来考虑。

        ① 速度方向需要满足\vec{v}\perp \vec{r}_{1}e^{\varphi i},即运动参考系的原点O_{1}始终在曲率半径所在的直线上,其数学表达为

\vec{v}=\vec{v}_{0}+(\vec{v}_{c}+ i\omega_{c} \vec{r}_{1})e^{\varphi i}=i\lambda \vec{r}_{1}e^{\varphi i}

        其中\lambda为关于时间t的标量函数。

        ② 速度大小需要满足\left |\vec{a}_{n} \right |=\frac{\left | \vec{v} \right |^{2}}{\left |\vec{r}_{1} \right |}=\lambda^{2} \left |\vec{r}_{1} \right |,其中\left |\vec{a}_{n} \right |\vec{a}在垂直于\vec{v}方向的分量,即向心加速度。

\vec{a}=\frac{d\vec{v}}{dt}=i\frac{d\lambda }{dt}\vec{r}_{1}e^{\varphi i}+i\lambda \frac{d\vec{r}_{1}}{dt}e^{\varphi i}-\lambda \omega _{c}\vec{r}_{1}e^{\varphi i}

        其中前两项平行于\vec{v},第三项垂直于\vec{v},故\vec{a}_{n}=-\lambda \omega _{c}\vec{r}_{1}e^{\varphi i}\left |\vec{a}_{n} \right |=\lambda \omega _{c}\left |\vec{r}_{1} \right |,从而解得

\lambda =\omega _{c}

\vec{v}_{0}=-\vec{v}_{c}e^{\varphi i}

        当且仅当\vec{v}_{0}满足上式时,运动参考系的原点O_{1}与质点轨迹的曲率中心始终重合。事实上,此时的质点轨迹在静止参考系中是一条渐开线,运动参考系的原点O_{1}所经过的轨迹是这条渐开线的基圆,基圆的半径r_{b}=\frac{\left |\vec{v} _{c} \right |}{\omega _{c}}

        对\frac{d\varphi }{dt}=\omega _{c}积分可得\varphi=\omega _{c}(t+t_{0}),其中t_{0}为常数,因此

\vec{v}_{0}=-\vec{v}_{c}e^{\varphi i}=-\vec{v}_{c}e^{\omega _{c}(t+t_{0}) i}

\vec{r}_{0}=i\frac{\vec{v}_{c}}{\omega _{c}}e^{\omega _{c}(t+t_{0}) i}+\vec{r}_{c}

        其中\vec{r}_{c}为常矢量。对\frac{d\vec{r}_{1} }{dt}=\vec{v}_{c}积分可得\vec{r}_{1}=\vec{v}_{c}(t+t_{0}),因此

\vec{r}=\vec{r}_{0}+\vec{r}_{1}e^{\varphi i}=\vec{r}_{c}+\left [i\frac{\vec{v}_{c}}{\omega _{c}}+\vec{v}_{c}(t+t_{0}) \right ]e^{\omega _{c}(t+t_{0}) i}

        令\vec{r}_{b} =i\frac{\vec{v} _{c}}{\omega _{c}},即\vec{r}_{b}的大小为\frac{\left |\vec{v} _{c} \right |}{\omega _{c}},方向与\vec{v}_{c}垂直,则上式可写成

\vec{r}-\vec{r}_{c}=(1-\varphi i) \vec{r}_{b} \, e^{\varphi i}

        此式为渐开线的参数方程,参数\varphi的取值为非负数,基圆半径为\left |\vec{r}_{b} \right |,基圆的圆心为\vec{r}_{c}的终点。因此渐开线的曲率半径始终与基圆相切,切点即为曲率中心。日常生活中齿轮的齿形曲线大多选用渐开线的一个重要原因就是因为它的这一性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值