好因子的最大数目

首先先看一个引言,一道整数拆分问题,题目如下:

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
这道题可以用到数学导数求极值的方法推出性质,为使乘积最大要尽可能的分出尽可能的3,证明链接如下
证明传送门
好因子的数目题意:
题目链接
给你一个正整数 primeFactors 。你需要构造一个正整数 n ,它满足以下条件:

n 质因数(质因数需要考虑重复的情况)的数目 不超过 primeFactors 个。
n 好因子的数目最大化。如果 n 的一个因子可以被 n 的每一个质因数整除,我们称这个因子是 好因子 。比方说,如果 n = 12 ,那么它的质因数为 [2,2,3] ,那么 6 和 12 是好因子,但 3 和 4 不是。
请你返回 n 的好因子的数目。由于答案可能会很大,请返回答案对 109 + 7 取余 的结果。

请注意,一个质数的定义是大于 1 ,且不能被分解为两个小于该数的自然数相乘。一个数 n 的质因子是将 n 分解为若干个质因子,且它们的乘积为 n 。

示例 1:

输入:primeFactors = 5
输出:6
解释:200 是一个可行的 n 。
它有 5 个质因子:[2,2,2,5,5] ,且有 6 个好因子:[10,20,40,50,100,200] 。
不存在别的 n 有至多 5 个质因子,且同时有更多的好因子。

这时就要回到主题了,因为每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的分解质因数. 分解质因数只针对合数。所以题目就转化为了,求正整数primeFactors拆分后的最大乘积。直接上代码

typedef long long LL;
const int MOD = 1e9+7;
class Solution {
public:
    int quit(int a,int b){
    int res = 1;
    while (b){
        if (b&1) res = (LL)res*a%MOD;
        a=(LL)a*a%MOD;
        b>>=1;
    }
    return res;
}   
    int maxNiceDivisors(int x) {
        if (x<=3) return x;
        if (x%3==0) return quit(3,x/3);
        if (x% 3 == 1) return (LL)quit(3, (x - 4) / 3) * 4 % MOD;
        return (LL)quit(3, (x- 2) / 3) * 2 % MOD;
    }
};

证明的过程让我想起来高数学的都忘完了,复习去。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要知道一个结论:一个数的质因数目等于其所有质因子的指数之和加1。比如,$24=2^3\times3$,其质因数目为$3+1=4$。 接下来,我们可以使用暴力枚举子数组的方法,对每个子数组求出其最小公倍数,然后计算其质因数目之和即可。时间复杂度为$O(n^3)$,其中$n$为数组长度,由于子数组数量为$O(n^2)$,对每个子数组求最小公倍数的时间复杂度为$O(n)$。 代码如下: ```python def gcd(a, b): if b == 0: return a return gcd(b, a % b) def lcm(a, b): return a * b // gcd(a, b) def count_factors(num): count = 0 for i in range(2, int(num**0.5)+1): while num % i == 0: count += 1 num //= i if num > 1: count += 1 return count def subarray_lcm_factor_sum(arr): n = len(arr) ans = 0 for i in range(n): for j in range(i, n): subarr_lcm = arr[i] for k in range(i+1, j+1): subarr_lcm = lcm(subarr_lcm, arr[k]) ans += count_factors(subarr_lcm) return ans ``` 然而,上述方法的时间复杂度较高,不能通过本题。考虑优化。 观察题目的数据范围,发现数组中每个元素都小于$10^6$,因此一个子数组的最小公倍数也不可能超过$10^6$,这启示我们可以对每个质数预处理出其在$[1,10^6]$范围内的倍数中出现的次数。具体地,我们可以使用线性筛法预处理出所有小于等于$10^6$的质数,然后对每个质数$p$,预处理出其在$[1,10^6]$范围内的倍数中出现的次数$cnt_p$,即: $$cnt_p=\sum_{i=1}^{\lfloor 10^6/p\rfloor}\lfloor\frac{i}{p}\rfloor$$ 这里的$\lfloor x\rfloor$表示不超过$x$的最大整数。例如,当$p=2$时,有$cnt_2=\lfloor 10^6/2\rfloor+\lfloor 10^6/4\rfloor+\lfloor 10^6/8\rfloor+\cdots=500000+250000+125000+\cdots$。这个式子可以用等比数列求和公式简化为$cnt_2=10^6-1$。 预处理完成后,对于每个子数组,我们可以依次枚举$[1,10^6]$范围内的质数$p$,统计其在子数组的最小公倍数中出现的次数。具体地,设当前枚举到的质数为$p$,统计$p^{cnt_p}$在子数组的最小公倍数中出现的次数。这个数量等于子数组中所有元素中$p$的指数的最小值乘以$cnt_p$。 具体地,我们可以用一个长度为$10^6+1$的数组$factor$来存储每个数对应的最小质因子。我们可以先用线性筛法求出所有小于等于$10^6$的质数,并将它们的倍数都标记上最小质因子。然后,对于每个子数组,我们可以使用一个长度为$10^6+1$的数组$cnt$来统计每个质数的指数之和,然后根据上述公式计算质因数目之和。 总时间复杂度为$O(n\log\log 10^6)$,其中$n$为数组长度。 代码如下: ```python def subarray_lcm_factor_sum(arr): n = len(arr) # 预处理每个数的最小质因子 factor = [0] * (10**6+1) primes = [] for i in range(2, 10**6+1): if factor[i] == 0: factor[i] = i primes.append(i) for p in primes: if p > factor[i] or i*p > 10**6: break factor[i*p] = p # 预处理每个质数在[1,10^6]范围内的倍数中出现的次数 cnt = [0] * (10**6+1) for p in primes: cnt[p] = 10**6 // p for i in range(2, cnt[p]+1): cnt[p] -= cnt[i*p] # 枚举子数组,统计质因数目之和 ans = 0 for i in range(n): for j in range(i, n): subarr_lcm = arr[i] for k in range(i+1, j+1): subarr_lcm = lcm(subarr_lcm, arr[k]) for p in primes: if p > subarr_lcm: break exp_sum = float('inf') for x in arr[i:j+1]: exp_sum = min(exp_sum, get_exponent(x, p)) ans += exp_sum * cnt[p] return ans ``` 其中,$get\_exponent(x,p)$用于计算$x$在质因数分解中$p$的指数,代码如下: ```python def get_exponent(num, prime): exp = 0 while num % prime == 0: exp += 1 num //= prime return exp ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值