二分查找和斐波那契查找优化

二分查找是一种很高效的查找方法,它需要所要查找的数列有序,然后每次折半进行查找,时间复杂度为O(logn),

理解起来不难但是在代码实现要注意边界

template<typename T>
int binarySearch(T aim,T *array,int left,int right){
	if(left<right){
		int mid=(left+right)>>1;
		if(aim<array[mid]){
			//right=mid;
			binarySearch(aim,array,left,mid);
		}
		else if(array[mid]<aim){
			//left=mid+1;
			binarySearch(aim,array,mid+1,right);
		}
		else{
			return mid;
		}		
	}
	else
	return -1;
}

将原来的数组区间[left,right)分为3份[left,mid),mid,[mid+1,right),通过重点mid来判断目标值属于哪个区间,然后再进行判断。

二分查找的方法是尽量的将区间等分,保证查找结构一个左右子树等高的树,但是通过分析上面代码可以知道,在左区间查找需要进行一次判断,在右区间进行查找需要进行两次判断,很明显若想让代码平均耗时减少,应保证目标值在左区间。所以应将原来的区间分为左区间大于又区间,通过证明知道采用黄金分割(斐波那数列)进行分割会较少时间复杂度

要用斐波那搜索,需要的前提条件是:数列有序,以及初始数列的长度加1是斐波那数。注意是数列长度fib[k]-1才行

所以首先应判断数列长度是不是某个fib-1才行

vector<int>fib;

int placeInFibonacci(int num){
	if(fib.size()<2){
		fib.push_back(0);
		fib.push_back(1);
	}
	for(int i=2;;++i){
		if(fib.size()==i){
			fib.push_back(fib[i-2]+fib[i-1]);
		}
		if(num==fib[i])
		return i;
		if(num<fib[fib.size()-1])
		return -1;
	}
}
template<typename T>
int fibonacciSearch(T aim,T *array,int left,int right){
	int k=placeInFibonacci(right+1);
	if(k==-1){
		return -1;	
	}
	while(left<right){
		int mid=fib[k-1]-1+left;
		if(aim<array[mid]){
			right=mid;
			--k;
		}
		else if(array[mid]<aim){
			left=mid+1;
			k-=2;
		}
		else{
			return mid;
			
		}		
	}
	return -1;
}

以上是数列中不含有重复的数当含有重复的数字的时候,若要返回最后一个数字的位置,则需要进行如下修改

template<typename T>
int binarySearch(T aim,T *array,int left,int right){
	while(left<right){
		int mid=(left+right)>>1;
		if(aim<array[mid]){
			right=mid;
		}
		else if(array[mid]<aim){
			left=mid+1;
		}
		else{
			while(aim==array[++mid]);
			return --mid;
		}		
	}
	return -1;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/MHSMIE/article/details/51555345
个人分类: C++ 算法设计
上一篇cocos2d-x 创建lua项目问题
下一篇IT资源-专为技术控
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭