利用 map 创建 vector
正如你所知,map实际上包含的是元素对。因此你可以这样写:
1
2
3
4
|
map
<
string
,
int
>
M
;
// ...
vector
<
pair
<
string
,
int
>
>
V
(
all
(
M
)
)
;
// remember all(c) stands for
(
c
)
.
begin
(
)
,
(
c
)
.
end
(
)
|
现在vector中包含着和map 中相同的元素。当然,和map一样,向量也是有序的。在你既不想改变map中的元素,又想以map所不允许的方式使用元素索引时,这个特性就派上用场了。
容器间拷贝数据
让我们看一下 copy(…) 算法。算法的原型如下:
1
|
copy
(
from_begin
,
from_end
,
to_begin
)
;
|
这个算法从第一个区间向第二个区间拷贝元素。第二个区间中应该有足够的可用空间。请看下面的代码:
1
2
3
4
5
6
7
8
9
10
|
vector
<
int
>
v1
;
vector
<
int
>
v2
;
// ...
// Now copy v2 to the end of v1
v1
.
resize
(
v1
.
size
(
)
+
v2
.
size
(
)
)
;
// 确保 v1 有足够空间
copy
(
all
(
v2
)
,
v1
.
end
(
)
-
v2
.
size
(
)
)
;
// Copy v2 elements right after v1 ones
|
译者注:教程上篇中有宏定义:#define all(c) c.begin(), c.end()
copy 还有另一个用于连接的好特性是inserters。由于篇幅限制,不多加赘述。请看下面的代码:
1
2
3
4
5
|
vector
<
int
>
v
;
// ...
set
<
int
>
s
;
// add some elements to set
copy
(
all
(
v
)
,
inserter
(
s
)
)
;
|
最后一行代码等价于:
1
2
3
4
|
tr
(
v
,
it
)
{
// remember traversing macros from Part I
s
.
insert
(
*
it
)
;
}
|
既然已经有了标准函数,那么我们还有什么理由要使用自定义的宏(这些宏定义只能够在 GCC 环境下运行)呢?使用诸如 copy 的标准算法是 STL 的一个有效应用,因为可以使别人更容易理解你的代码。
push_back 使用 back_inserter 向 Vector 中插入元素 ,或者使用f ront_inserter 向 deque 容器中插入元素。在某些情况下,需要知道,不只 begin/end 可以作为 copy 的前两个参数,rbegin/ren d也可以。使用 rbegin/rend,将会逆序拷贝元素。
归并 list
归并队列是对有序 list 的另一个常见操作。假设你有两个有序 list,分别是 A 和 B。你想将这两个 list 归并成一个新列表。通常会有四种方式:
- ‘union’ the lists, R = A+B
- intersect the lists, R = A*B
- set difference, R = A*(~B) or R = A-B
- set symmetric difference, R = A XOR B
STL为这类任务提供了四种算法:set_union(…)、set_intersection(…)、set_difference(…) 和 set_symmetric_difference(…)。它们的调用方式相同,因此我们以 set_intersection 为例。一个常用原型如下:
1
|
end_result
=
set_intersection
(
begin1
,
end1
,
begin2
,
end2
,
begin_result
)
;
|
[begin1,end1) 和 [begin2,end2) 是输入的两个list。 ‘begin_result’ 是只是输出结果起点的迭代器。但是输出结果list的大小是未知的。所以这个函数返回输出结果终点的迭代器(这决定了在输出结果中有多少个元素)。 关于使用细节,请看下面的例子:
1
2
3
4
5
6
7
8
9
|
int
data1
[
]
=
{
1
,
2
,
5
,
6
,
8
,
9
,
10
}
;
int
data2
[
]
=
{
0
,
2
,
3
,
4
,
7
,
8
,
10
}
;
vector
<
int
>
v1
(
data1
,
data1
+
sizeof
(
data1
)
/
sizeof
(
data1
[
0
]
)
)
;
vector
<
int
>
v2
(
data2
,
data2
+
sizeof
(
data2
)
/
sizeof
(
data2
[
0
]
)
)
;
vector
<
int
>
tmp
(
max
(
v1
.
size
(
)
,
v2
.
size
(
)
)
;
vector
<
int
>
res
=
vector
<
int
>
(
tmp
.
begin
(
)
,
set_intersection
(
all
(
v1
)
,
all
(
v2
)
,
tmp
.
begin
(
)
)
;
|
最后一行,我们创建了一个新向量 res。它通过区间构造函数创建。区间以 tmp 的起点作为起点,以 set_intersection 算法结果作为结尾。这个算法会取 v1 和 v2 的交集,并将交集写到输出迭代器,从’tmp.begin()’开始写入。set_intersection 算法的返回值是结果数据集终点。
补充说明一点可能会帮助你深入地理解:如果你只是想得到交集中元素的数量,则使用 int cnt = set_intersection(all(v1), all(v2), tmp.begin()) – tmp.begin(); 即可。
实际上,我不会使用“vector<int> tmp”这种结构。我认为每调用一次“set_***”算法都开辟一次内存是不明智的。相反,我会定义一个类型合适并且空间充足的全局或者静态变量。请看下面的代码:
1
2
3
4
5
6
7
8
9
10
|
set
<
int
>
s1
,
s2
;
for
(
int
i
=
0
;
i
<
500
;
i
++
)
{
s1
.
insert
(
i
*
(
i
+
1
)
%
1000
)
;
s2
.
insert
(
i
*
i
*
i
%
1000
)
;
}
static
int
temp
[
5000
]
;
// greater than we need
vector
<
int
>
res
=
vi
(
temp
,
set_symmetric_difference
(
all
(
s1
)
,
all
(
s2
)
,
temp
)
)
;
int
cnt
=
set_symmetric_difference
(
all
(
s1
)
,
all
(
s2
)
,
temp
)
–
temp
;
|
‘res’ 中包含两个输入数据集中存在差异的元素。
注意,使用这些算法,输入的数据集必须是有序的。因此,例外一点也需要牢记,由于set是有序的,我们可以使用set(或者不觉得pair麻烦的话,也可以使用map)作为这些算法的参数。
这类算法从一端开始排序,算法复杂度是 O(N1+N2),N1 和 N2 是输入数据集的大小。
算术算法
另外一个有趣的算法是 accumulate(…)。如果我对一个int型的vector调用,并且将第三个参数设为0,accumulate(…) 会返回 vector 中元素之和。
1
2
3
|
vector
<
int
>
v
;
// ...
int
sum
=
accumulate
(
all
(
v
)
,
0
)
;
|
accumulate()的返回值类型与第三个参数的类型一致。所以,当你不确定元素之和是否可以采用int型时,直接指定第三个参数的类型就可以了。
1
2
3
|
vector
<
int
>
v
;
// ...
long
long
sum
=
accumulate
(
all
(
v
)
,
(
long
long
)
0
)
;
|
Accumulate也可以用来计算乘积。第四个参数标明了计算方法。如果你想获得乘积,则使用如下代码:
1
2
3
4
|
vector
<
int
>
v
;
// ...
double
product
=
accumulate
(
all
(
v
)
,
double
(
1
)
,
multiplies
<
double
>
(
)
)
;
// don’t forget to start with 1 !
|
另外一个有趣的算法是inner_product(…),它用来计算两个向量的数量积。例如:
1
2
3
4
5
6
7
|
vector
<
int
>
v1
;
vector
<
int
>
v2
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
v1
.
push_back
(
10
-
i
)
;
v2
.
push_back
(
i
+
1
)
;
}
int
r
=
inner_product
(
all
(
v1
)
,
v2
.
begin
(
)
,
0
)
;
|
‘r’是这样的计算得来的:(v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]),或者说是(10*1+9*2+8*3),最终计算结果是52.
和“accumulate”算法一样,inner_product的返回值类型是由最后一个参数指定的。最后一个参数是返回结果的初始值。因此inner_product可以用于多维空间的超平面对象,这样调用就可以了:
1
|
inner_product
(
all
(
normal
)
,
point
.
begin
(
)
,
-
shift
)
|
现在你应该明白,inner_product只需要对迭代器进行递增,因此queue或者set也可以用作参数。用于计算特殊中间值的卷积滤波器可以这样来实现:
1
2
3
4
5
6
7
|
set
<
int
>
values_ordered_data
(
all
(
data
)
)
;
int
n
=
sz
(
data
)
;
// int n = int(data.size());
vector
<
int
>
convolution_kernel
(
n
)
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convolution_kernel
[
i
]
=
(
i
+
1
)
*
(
n
-
i
)
;
}
double
result
=
double
(
inner_product
(
all
(
ordered_data
)
,
convolution_kernel
.
|
当然,这些代码只是一个例子。老实说,将值拷贝到另一个vector然后排序会更快一些。
这样用也是可以的:
1
2
3
|
vector
<
int
>
v
;
// ...
int
r
=
inner_product
(
all
(
v
)
,
v
.
rbegin
(
)
,
0
)
;
|
上面的代码将会计算 V[0]*V[N-1] + V[1]+V[N-2] + … + V[N-1]*V[0],其中N是‘v’中元素的个数。
Nontrivial Sorting重要的排序
实际上,sort(…)采用了与STL相同的技术。
- 所有的比较都基于运算符‘<’
这意味着你只需重载’operator <‘即可。示例代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
struct
fraction
{
int
n
,
d
;
// (n/d)
// ...
bool
operator
<
(
const
fraction
&
f
)
const
{
if
(
false
)
{
return
(
double
(
n
)
/
d
)
<
(
double
(
f
.
n
)
/
f
.
d
)
;
// Try to avoid this, you're the TopCoder!
}
else
{
return
n
*
f
.
d
<
f
.
n
*
d
;
}
}
}
;
// ...
vector
<
fraction
>
v
;
// ...
sort
(
all
(
v
)
)
;
|
为了以防万一,你的对象应该有默认构造函数和拷贝构造函数(或许,还要重载赋值运算符——这条补充说明并非对TopCoders而言的)。
一定要牢记操作符 ‘ <’ 的原型:返回值是bool类型,有const修饰符,参数是const类型的引用。
另一个实现比较的方法是创建比较函数。特定的比较方式作为sort(…)算法的第三个参数传入。例如:按照极角大小对点排序(点的结构是pair<double,double>)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
typedef
pair
<
double
,
double
>
dd
;
const
double
epsilon
=
1e
-
6
;
struct
sort_by_polar_angle
{
dd
center
;
// Constuctor of any type
// Just find and store the center
template
<
typename
T
>
sort_by_polar_angle
(
T
b
,
T
e
)
{
int
count
=
0
;
center
=
dd
(
0
,
0
)
;
while
(
b
!=
e
)
{
center
.
first
+=
b
->
first
;
center
.
second
+=
b
->
second
;
b
++
;
count
++
;
}
double
k
=
count
?
(
1.0
/
count
)
:
0
;
center
.
first
*=
k
;
center
.
second
*=
k
;
}
// Compare two points, return true if the first one is earlier
// than the second one looking by polar angle
// Remember, that when writing comparator, you should
// override not ‘operator <’ but ‘operator ()’
bool
operator
(
)
(
const
dd
&
a
,
const
dd
&
b
)
const
{
double
p1
=
atan2
(
a
.
second
-
center
.
second
,
a
.
first
-
center
.
first
)
;
double
p2
=
atan2
(
b
.
second
-
center
.
second
,
b
.
first
-
center
.
first
)
;
return
p1
+
epsilon
<
p2
;
}
}
;
// ...
vector
<
dd
>
points
;
// ...
sort
(
all
(
points
)
,
sort_by_polar_angle
(
all
(
points
)
)
)
;
|
这段代码非常复杂,但是证明了STL的强大功能。应当指出,在这个例子中,所有的代码在编译的时候都是内置(inline)的,实际上执行起来是很快的。
也要注意对于两个相等的对象,操作符 ‘ <’ 会返回FALSE。这是非常重要的,接下来会解释为什么如此重要。
在map和set中使用自定义对象
set 和 map 中的元素是有序的。这是一个总体规则。所以,如果想在set或者map中使用你的对象,那么这些对象应该是可比的。你已经了解了STL中的比较规则:
- 所有的比较都基于运算符 ‘<’
也就是,你应该这样理解:要实现set或者map中元素有序,我只需要实现操作符“<”
假设我们要对point结构体(或者point类)进行操作。我们想让一些线段相交,并且取得这些焦点的集合(有点耳熟?)由于计算机精度有限,当一些点的坐标差别不大时,这些点将会是相同的。我们应该这样编码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
const
double
epsilon
=
1e
-
7
;
struct
point
{
double
x
,
y
;
// ...
// Declare operator < taking precision into account
bool
operator
<
(
const
point
&
p
)
const
{
if
(
x
<
p
.
x
-
epsilon
)
return
true
;
if
(
x
>
p
.
x
+
epsilon
)
return
false
;
if
(
y
<
p
.
y
-
epsilon
)
return
true
;
if
(
y
>
p
.
y
+
epsilon
)
return
false
;
return
false
;
}
}
;
|
现在,你可以使用set<point>或者map<point, string>,例如,查找某些点是否已经在交集中存在。更进一步,使用map<point, vector<int> >,获得相交在一点的所有线段索引的列表。
在STL中相等并不意味着相同,这是一个有趣的概念,但是此处我们不予深究。
Vector中的内存管理
据说vector不会在每次push_back()的时候都重新开辟内存。实际上,调用push_back()的时候,vector开辟了多于当前所需的内存空间。当调用push_back()的时候,vector的大部分STL实现都开辟了双倍空间,并不需要每次都开辟分配内存。这或许在实际运用中并不好,因为你的程序占用了双倍的内存空间。有两种简易方法和一种复杂方法来处理这个问题。
第一种方法是使用vector的成员函数reserve()。这个函数使vector开辟多余的内存。在未达到reserve()指定的大小之前,vector不会再次调用push_back()时开辟内存。
考虑一下接下来的例子。你有一个1000个元素的向量,它开辟了1024大小的空间。你打算向vector中追加50个元素。如果你调用50次push_back(),vector开辟的内存控件将会是2048.但是如果在调用push_back()之前加上这句代码:
1
|
v
.
reserve
(
1050
)
;
|
Vector开辟的内存空间恰好容纳1050个元素.
如果你经常使用push_back,那么reserve()会使你受益匪浅。
顺便说一句,对于vector来说,在copy(…, back_inserter(v)) 之后使用v.reserve()是一种很好的模式。
另外一种情况:你希望某些操作之后,vector占用的内存不会增加。该如何摆脱潜在的内存追加呢?解决方案如下:
1
2
3
|
vector
<
int
>
v
;
// ...
vector
<
int
>
(
all
(
v
)
)
.
swap
(
v
)
;
|
这段代码的含义是:创建一个与 ‘v’ 内容相同的临时向量,然后这个临时向量与 ‘v’ 互换。互换之后v中的多余内存将会相会小时。在SRMs中这个方案很少用到。
恰当但复杂的解决方案是为vector开发自定义的分配符,但这很明显不是本教程该讨论的内容。
用STL实现真正的算法
带着STL知识,我们继续这篇文章中最有意思的部分:如何实现真正高效的算法?
深度优先检索(DFS)
这里不再赘述DFS的原理——可以阅读 gladius 所著《Introduction to Graphs and Data Structures》教程中的 这一章——但是我将会展示STL如何有助于实现DFS。
首先,假设有一个无向图。在STL中,存储这个无向图最简单的方法是保存每个节点的相邻节点。最终生成结构体vector< vector<int> > W ,其中W[i] 是到节点 i 的相邻节点列表。接下来证明一下我们是按照DFS存储的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
/*
Reminder from Part 1:
typedef vector<int> vi;
typedef vector<vi> vvi;
*/
int
N
;
// number of vertices
vvi
W
;
// graph
vi
V
;
// V is a visited flag
void
dfs
(
int
i
)
{
if
(
!
V
[
i
]
)
{
V
[
i
]
=
true
;
for_each
(
all
(
W
[
i
]
)
,
dfs
)
;
}
}
bool
check_graph_connected_dfs
(
)
{
int
start_vertex
=
0
;
V
=
vi
(
N
,
false
)
;
dfs
(
start_vertex
)
;
return
(
find
(
all
(
V
)
,
0
)
==
V
.
end
(
)
)
;
}
|
这样就证明完了。STL算法”for_each”为V中的每一个元素调用指定的函数”dfs”。在check_graph_connected()函数中我们首先创建一个访问标记数组(数组大小合适并且以0填充)。DFS调用完成之后,通过检查V中是否有值为0的元素——只需调用一下find()函数就可以实现——就可以确认我们是否访问到了所有结点,。
注意一下for_each:这个函数的最后一个参数,几乎可以是任何具有函数功能的值。不仅可以是全局函数,还可以是函数配接器,标准算法甚至是成员函数。如果是成员函数的话,则需要成员函数或者是成员函数引用的配接器,在此我们不讨论这个问题。
注:不建议使用vector<bool>。尽管在这个特定案例中这样使用没有问题,但最好还是避免这种做法。使用预定义的 ‘vi’ (vector<int>)。将“true”或者“false”作为int类型赋值给vi是没有问题的。尽管这样需要的内存是使用bool型的 8*sizeof(int)=8*4=32 倍,但是可以适应大多数情况并且在TopCoder上运行很快。
关于其他类型容器及其使用方法的简要介绍
Vector由于是最简单的数组容器,因此非常受欢迎。在大多数情况下,你只用到vector的数组功能。但是,有时你可能需要一个更高级的容器。
在 SRM(Single Round Match) 热期间,研究某个STL容器的全部功能并不是一个好的做法。如果不清楚需要使用什么容器,那么你最好使用vector、map或者set。例如,stack可以通过vector实现,并且如果你忘记了stack容器的符号,这种方式可以运行的更快一些。
STL提供了以下容器:list、stack、queue、deque、priority_queue。我发现在SRM中,list和deque很少用到(除了在某些特殊的基于这些容器的任务中会用到)。但是,queue和priority_queue仍然有必要介绍一下。
Queue
Queue是一种具有三类操作的数据类型,所有操作的平均时间复杂度都是O(1):在头部追加一个元素,在尾部移除一个元素,获取第一个无法访问的元素(“tail”)。换言之,queue是一个先进先出(FIFO)的缓冲区。
广度优先检索(BFS)
再次说明,如果你不熟悉BFS算法,请首先参照一下这篇Topcoder教程(链接)。在广度优先算法(BFS)中使用queue是非常便捷的,如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
/*
Graph is considered to be stored as adjacent vertices list.
Also we considered graph undirected.
vvi is vector< vector<int> >
W[v] is the list of vertices adjacent to v
*/
int
N
;
// number of vertices
vvi
W
;
// lists of adjacent vertices
bool
check_graph_connected_bfs
(
)
{
int
start_vertex
=
0
;
vi
V
(
N
,
false
)
;
queue
<
int
>
Q
;
Q
.
push
(
start_vertex
)
;
V
[
start_vertex
]
=
true
;
while
(
!
Q
.
empty
(
)
)
{
int
i
=
Q
.
front
(
)
;
// get the tail element from queue
Q
.
pop
(
)
;
tr
(
W
[
i
]
,
it
)
{
if
(
!
V
[
*
it
]
)
{
V
[
*
it
]
=
true
;
Q
.
push
(
*
it
)
;
}
}
}
return
(
find
(
all
(
V
)
,
0
)
==
V
.
end
(
)
)
;
}
注:
#define tr(c,i) for(typeof((c).begin() i = (c).begin(); i != (c).end(); i++)
|
更确切地说,queue 支持 front()、back()、 push()(==push_back())和 pop()( ==pop_front())操作。如果你会用到push_front()和pop_back(),就使用dequeue。Dequeue提供时间复杂度为O(1)的所有算法。
queue和map有一个有趣的应用,用于在一幅复杂的图中,通过BFS算法实现最短路径的检索。假设我们有一幅图,图中的节点代表着某些复杂的东西。如:
1
2
3
4
|
pair
<
pair
<
int
,
int
>
,
pair
<
string
,
vector
<
pair
<
int
,
int
>
>
>
>
(
this
case
is
quite
usual
:
complex
data
structure
may
define
the
position
in
some
game
,
Rubik’
s
cube
situation
,
etc…
)
|
假设已知我们要查找的路径很短,并且路径上的位置节点很少。如果图中所有边的长度都为1,那么我们可以使用BFS在这幅图中检索最短路径。一段伪代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
// Some very hard data structure
typedef
pair
<
pair
<
int
,
int
>
,
pair
<
string
,
vector
<
pair
<
int
,
int
>
>
>
>
POS
;
// ...
int
find_shortest_path_length
(
POS
start
,
POS
finish
)
{
map
<
POS
,
int
>
D
;
// shortest path length to this position
queue
<
POS
>
Q
;
D
[
start
]
=
0
;
// start from here
Q
.
push
(
start
)
;
while
(
!
Q
.
empty
(
)
)
{
POS
current
=
Q
.
front
(
)
;
// Peek the front element
Q
.
pop
(
)
;
// remove it from queue
int
current_length
=
D
[
current
]
;
if
(
current
==
finish
)
{
return
D
[
current
]
;
// shortest path is found, return its length
}
tr
(
all
possible
paths
from
'current'
,
it
)
{
if
(
!
D
.
count
(
*
it
)
)
{
// same as if(D.find(*it) == D.end), see Part I
// This location was not visited yet
D
[
*
it
]
=
current_length
+
1
;
}
}
}
// Path was not found
return
-
1
;
}
// ...
|
然而,如果图中边长不相等,那么BFS算法就无效了。这时我们应该使用Dijkstra算法代替。通过 priority_queue可以实现这样一个Dijkstra算法,请继续看后面的内容。
Priority_Queue
Priority_Queue是一个二进制堆。它是一个可以执行以下操作的数据结构:
- 压入任意元素
- 显示头部元素
- 弹出头部元素
STL中priority_queue的应用请看SRM307中TrainRobber问题。
Dijkstra
在本文的最后一节,介绍一下如何利用STL容器实现稀疏图中的Dijkstra算法。请读这篇教程了解一下Dijkstra算法。
假设我们有一幅带比重的有向图,这幅有向图是以vector<vector<pair<int,int>>>G 存储的,在G中
- G.size() 代表有向图中的节点数量
- G[i].size() 是从索引为i的节点直接可达的节点数量
- G[i][j].first 是从索引为i的节点直接可达的第j个节点的索引
- G[i][j].second 是连接索引为i的节点和索引为 G[i][j].first 节点的边长
我们假设在如下两个代码段中这样定义:
1
2
3
|
typedef
pair
<
int
,
int
>
ii
;
typedef
vector
<
ii
>
vii
;
typedef
vector
<
vii
>
vvii
;
|
通过 priority_queue 实现 Dijstra 算法
非常感谢 misof 抽出时间给我解释为什么这个算法的时间复杂度很好,尽管没有从queue中移除独立的元素。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
vi
D
(
N
,
987654321
)
;
// distance from start vertex to each vertex
priority_queue
<
ii
,
vector
<
ii
>
,
greater
<
ii
>
>
Q
;
// priority_queue with reverse comparison operator,
// so top() will return the least distance
// initialize the start vertex, suppose it’s zero
D
[
0
]
=
0
;
Q
.
push
(
ii
(
0
,
0
)
)
;
// iterate while queue is not empty
while
(
!
Q
.
empty
(
)
)
{
// fetch the nearest element
ii
top
=
Q
.
top
(
)
;
Q
.
pop
(
)
;
// v is vertex index, d is the distance
int
v
=
top
.
second
,
d
=
top
.
first
;
// this check is very important
// we analyze each vertex only once
// the other occurrences of it on queue (added earlier)
// will have greater distance
if
(
d
<=
D
[
v
]
)
{
// iterate through all outcoming edges from v
tr
(
G
[
v
]
,
it
)
{
int
v2
=
it
->
first
,
cost
=
it
->
second
;
if
(
D
[
v2
]
>
D
[
v
]
+
cost
)
{
// update distance if possible
D
[
v2
]
=
D
[
v
]
+
cost
;
// add the vertex to queue
Q
.
push
(
ii
(
D
[
v2
]
,
v2
)
)
;
}
}
}
}
|
本文中我不想点评算法本身,但是你应该注意到priority_queue对象的定义。一般而言,priority_queue<ii>是可以用的,但是成员函数top()将会返回队列中最大的元素,而不是最小的。我常用的简单解决方案之一是在pair的第一个元素不存储偏移量而是存储偏移量的负值。如果你想以合适的方法实现队列的反转,你需要实现priority_queue的反转。priority_queue的第二个模板参数是容器的存储类型,第三个模板参数则是比较函数的指针。
通过 set 实现 Dijkstra
在向Petr请教C#中Dijkstra的有效实现的时候,他给我讲述了这个方法。在Dijkstra算法的实现中,我们使用priority_queue向“已经分析过的结点”队列中追加元素,平均时间复杂度和最差时间复杂度都是O(log N)。但是,除了priority_queue还有一个容器为我们提供这个功能——就是set。经过大量的实践,我得出:基于priority_queue和基于set的Dijkstra算法是一样的效果。
基于set的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
vi
D
(
N
,
987654321
)
;
// start vertex
set
<
ii
>
Q
;
D
[
0
]
=
0
;
Q
.
insert
(
ii
(
0
,
0
)
)
;
while
(
!
Q
.
empty
(
)
)
{
// again, fetch the closest to start element
// from “queue” organized via set
ii
top
=
*
Q
.
begin
(
)
;
Q
.
erase
(
Q
.
begin
(
)
)
;
int
v
=
top
.
second
,
d
=
top
.
first
;
// here we do not need to check whether the distance
// is perfect, because new vertices will always
// add up in proper way in this implementation
tr
(
G
[
v
]
,
it
)
{
int
v2
=
it
->
first
,
cost
=
it
->
second
;
if
(
D
[
v2
]
>
D
[
v
]
+
cost
)
{
// this operation can not be done with priority_queue,
// because it does not support DECREASE_KEY
if
(
D
[
v2
]
!=
987654321
)
{
Q
.
erase
(
Q
.
find
(
ii
(
D
[
v2
]
,
v2
)
)
)
;
}
D
[
v2
]
=
D
[
v
]
+
cost
;
Q
.
insert
(
ii
(
D
[
v2
]
,
v2
)
)
;
}
}
}
|
另外重要的一点:STL中的priority_queue不支持DECREASE_KEY 操作,如果你需要这个操作,你最好使用于set。
我曾经花费了大量的时间来弄明白为什么从queue(还有set)中移除元素和移除第一个元素一样快。
这两个实现有着同样的复杂度并且花费一样的时间。而且,我进行了实验,两种实现方式的效果几乎相同(时间差大约是%0.1)
对我而言,我更倾向于利用set实现Dijkstra算法,因为从逻辑上更容易理解,并且不需要记住greater<int>预示着重写。
STL 之外的一些东西
读到这里,我希望你已经明白了STL是一个非常强大的工具,尤其对TopCoder SRMs来说。但是,在你使用STL之前,请记住哪些没有包含在STL中。
首先,STL没有BigInteger。如果SRM中的一个任务需要大量的运算,尤其是乘除运算,你有三种选择:
- 使用预先写好的模板
- 使用JAVA,如果你很熟练的话
- 说“啊,这真的不是我能解决的SRM任务”
我建议第一个选项。
在几何库中有一个几乎相同的问题。STL不支持几何学,所以你再次面临着上面的三个选项。
最后一件事情——有时很烦人的事情——是STL没有内部的字符串分割函数。如果这个ExampleBuilder插件的默认C++模板中包含这个函数,就更麻烦了。但是,我发现在一般的案例中使用istringstream(s),在复杂的案例中使用sscanf(s.c_str(), …)就足够了。
通过这些说明,希望你能够认识到这篇文章的价值,也希望你能发现STL是C++中一个非常有用的附加项。祝你在竞赛中好运。
作者注:在本教程的两部分中,我都建议使用模板来减少实现某些功能的时间。这个建议一直适用于程序员。暂且不谈在SRM中使用模板是不是一个好的策略,在日常生活中,模板对于想理解代码的人来说是一件烦人的事情。我有时会依赖于模板,最终我决定不再使用。我鼓励你权衡使用模板类的利弊,然后做出自己的决定。