一,问题:
星期五的晚上,一帮同事在希格玛大厦附近的“硬盘酒吧”多喝了几杯。程序员多喝了几杯之后谈什么呢?自然是算法问题。有个同事说:“我以前在餐馆打工,顾客经常点非常多的烙饼。店里的饼大小不一,我习惯在到达顾客饭桌前,把一摞饼按照大小次序摆好——小的在上面,大的在下面。由于我一只手托着盘子,只好用另一只手,一次抓住最上面的几块饼,把它们上下颠倒个个儿,反复几次之后,这摞烙饼就排好序了。我后来想,这实际上是个有趣的排序问题:假设有n块大小不一的烙饼,那最少要翻几次,才能达到最后大小有序的结果呢?”
你能否写出一个程序,对于n块大小不一的烙饼,输出最优化的翻饼过程呢?
二、分析
书中给的分析是这样的:
1.首先找到了一种可解的方案,但不一定是最优解
这个方案是:如果我们最底层的饼已经排序完毕,那么我们只处理上面的n-1个饼就行,同样的之后我们再把n-1个饼的排序转化为n-2,n-3直到最后的两个饼排好顺序。
具体是什么意思呢?第一轮:我们先找到这n个饼中的最大的饼,然后从该处进行翻饼,把这个最大的饼翻到最上面,然后再把所有的饼进行一次翻滚,这样 最大的饼就翻到了最下面。
第二轮:我们上一轮已经把最大的饼翻到最下面了,接着我们用同样的方法对待上面的n-1个饼,我们在这n-1个饼中找到最大的饼,然后 用同样的方法把其翻滚到最底层的上面那一层(倒数第二层)。