- 博客(2)
- 资源 (1)
- 收藏
- 关注
转载 【深度学习】深入理解Batch Normalization批标准化
1:Batch Normalization(BN)的基本动机 1.1“Internal Covariate Shift”问题 机器学习领域有个很重要的假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。 covariate shift的概念:如果ML系统实例集合<X,Y&g...
2019-01-17 20:04:11 269
转载 深度学习中Dropout原理解析
1:Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。 过拟合是很多机器学习的通病。如果模型过拟合,那么得到...
2019-01-17 18:55:41 1717
YOLOV2代码
2018-10-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人