- 博客(7)
- 收藏
- 关注
原创 集成学习之蒸汽量预测
一、概述这个问题输入38个特征,输出一个值,是一个回归问题。二、感想可以使用 kdeplot(核密度估计图) 进行数据的初步分析,删除测试数据集和训练集中分布不同的特征;可以通过求相关性系数删除和响应相关性太低的特征;可以用Box-Cox把数据转换为正态分布。...
2021-05-23 23:54:11 119
原创 集成学习之幸福感预测
幸福感预测的目的在于通过已知特征构建模型实现幸福感的预测。个人体会的流程如下:首先进行异常值检测,同时对已有特征进行补足或删除处理;基于已有特征根据个人理解构建新特征;构建集成模型,比较有意思的是LightGBM可以得到特征的重要性排序;多模型集成。值得注意的是最后虽然响应是离散值,但是进行模型集成的时候,将响应视作连续值进行回归貌似比分类效果好。...
2021-05-16 00:19:15 284
原创 集成学习之stacking
集成学习之stacking一、简介二、个人理解一、简介stacking是基于blending的扩展。由blending原理可知,数据集被分成了三份,训练集和验证集其实都在起训练作用,只不过前者训练第一层分类器,后者训练第二层分类器。这样好吗?这样不好:首先,数据集划分的随机性会导致构建的模型不够稳健,也就是说,划分方式的改变可能会导致构建的模型差异很大;其次,划分后用作训练的数据集明显变小,得想办法再利用。stacking的思想就是把K折交叉验证引入训练过程,这样的话,第一层分类器和第二层分类器训练数
2021-05-12 11:14:43 448
原创 #集成学习之Blending
<目录集成学习之Blending一、Blending是什么?二、与单一模型对比1.决策边界2.精度对比总结集成学习之Blending简要记录学习一、Blending是什么?Blending基本思想为构造两层模型,具体构建流程如下:数据划分为训练集、验证集和测试集;选择多个模型作为第一层模型,在训练集进行训练;第一层模型在验证集进行预测,将预测结果作为特征,在验证集构建第二层模型进行训练;第一层模型加第二层模型为最终模型,在测试集检验精度。二、与单一模型对比1.决策边界以iris数据集
2021-05-11 21:19:34 315
原创 VS2019配置armadillo
VS2019配置armadillo官网下载armdillo http://arma.sourceforge.net/download.html参考这篇博客配置库,本文按照方式1已进行测试新建C++工程,拷入armadillo子文件夹examples中的example1进行编译,编译不通过,提示缺少blas_win64_MT.dll;将examples子文件夹下lib_win64中的两个...
2020-01-02 15:33:29 1396 1
原创 小白的C++入门
这两天需要把一个matlab程序写成C++,考虑C++函数太少,找了两个科学计算库,一个是armadillo,一个是gsl,找教程配了一下,周末写个总结。
2019-09-26 11:56:52 466
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人