概述
- Flink流应用程序处理的是以数据对象表示的事件流。所以在.Flink内部,我们需要能够处理这些对象。它们需要被序列化和反序列化,以便通过网络传送它们;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点,Flink需要明确知道应用程序所处理的数据类型。Flink 使用类型信息的概念来表示数据类型,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
- Flink还具有一个类型提取系统,该系统分析函数的输入和返回类型,以自动获取类型信息,从而获得序列化器和反序列化器。但是,在某些情况下,例如 lambda函数或泛型类型,需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。
- Flink支持Java和 scala中所有常见数据类型。使用最广泛的类型有以下几种。
基础数据类型
Flink支持Java和 scala中基础数据类型, Int,Double,Long,String。。。
DataStream<Integer> numberStream = env.fromElements(1,2,3,4);
numberStream.map(data -> data*2);
Java和Scala元组(Tuples)
DataStream<Tuples<String,Integer>> personStream = env.fromElements(
new Tuple2("Adam", 17),
new Tuple2("Sarah", 23);
personStream.filter(p ->p.f1 > 18);
Scala样例类(case classes)
case class Person(name: String, age: Int)
val person:DataStream[person] = env.fromElements(
Person ("Adam", 17),
Person ("Sarah", 23)
persons.filter(p =>p.age > 18)
Java简单对象(POJOs)
public class Person{
public String name;
public int age;
public Person() {}
public Person(String name, int age){
this.name = name;
this.age = age;
}
}
DataStream<Person> persons = env.fromElements(
new Person("Alex", 42),
new Tuple2("Wendy", 23));
其他
Flink对Java和Scala中的一些特殊目的类型也都是支持的,比如Java的ArrayList,HashMap,Enum等等。