Flink支持的数据类型

概述

  • Flink流应用程序处理的是以数据对象表示的事件流。所以在.Flink内部,我们需要能够处理这些对象。它们需要被序列化和反序列化,以便通过网络传送它们;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点,Flink需要明确知道应用程序所处理的数据类型。Flink 使用类型信息的概念来表示数据类型,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
  • Flink还具有一个类型提取系统,该系统分析函数的输入和返回类型,以自动获取类型信息,从而获得序列化器和反序列化器。但是,在某些情况下,例如 lambda函数或泛型类型,需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。
  • Flink支持Java和 scala中所有常见数据类型。使用最广泛的类型有以下几种。

基础数据类型

Flink支持Java和 scala中基础数据类型, Int,Double,Long,String。。。

DataStream<Integer> numberStream = env.fromElements(1,2,3,4);
numberStream.map(data -> data*2);

Java和Scala元组(Tuples)

DataStream<Tuples<String,Integer>> personStream = env.fromElements(
	   new Tuple2("Adam", 17),
	   new Tuple2("Sarah", 23);
personStream.filter(p ->p.f1 > 18);

Scala样例类(case classes)

case class Person(name: String, age: Int)
val person:DataStream[person] = env.fromElements(
	Person ("Adam", 17),
	Person ("Sarah", 23)
persons.filter(p =>p.age > 18)

Java简单对象(POJOs)

public class Person{
	public String name;
	public int age;
	public Person() {}
	public Person(String name, int age){
		this.name = name;
		this.age = age;
	}
}
DataStream<Person> persons = env.fromElements(
	new Person("Alex", 42),
	new Tuple2("Wendy", 23));

其他

Flink对Java和Scala中的一些特殊目的类型也都是支持的,比如Java的ArrayList,HashMap,Enum等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值