已知Sn=1+1/2+1/3+…+1/n,对于任意一个整数K,当n满足够大的时候,Sn>K
标签(空格分隔): 数据结构和算法
题目:
已知Sn=1+1/2+1/3+...+1/n,对于任意一个整数K,当n满足够大的时候,Sn>K。
给出一个整数K(1<=K<=15),要求计算出一个最大的N,使得Sn>K。
样例
输入:int K 10
输出:12367
说明:题目可以使用多种语言。这里使用JAVA。
由于时间限制,所以使用while n+=1/n,不可行。所以我们可以从Sn=1+1/2+1/3+…+1/n下手。
在数学中“欧拉公式”给出:
1+1/2+1/3+……+1/n=ln(n+1)+C,C为欧拉常数 数值是0.5772…….
Euler(欧拉)在1734年,利用牛顿的成果,首先获得了调和级数有限多项和的值。
结果是: 1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量) 他的证明是这样的:
根据牛顿的幂级数有