已知Sn=1+1-2+1-3+...+1-n,对于任意一个整数K,当n满足够大的时候,Sn-K

博客探讨了如何利用数学中的欧拉公式1+1/2+1/3+…+1/n=ln(n+1)+C来解决对于任意整数K,当n足够大时Sn>K的问题。文章指出,由于时间限制,不能采用n+=1/n的方式,而是借助Java的Math.log()函数来实现。通过代码实现,得出结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知Sn=1+1/2+1/3+…+1/n,对于任意一个整数K,当n满足够大的时候,Sn>K

标签(空格分隔): 数据结构和算法


题目:

    已知Sn=1+1/2+1/3+...+1/n,对于任意一个整数K,当n满足够大的时候,Sn>K。
    给出一个整数K(1<=K<=15),要求计算出一个最大的N,使得Sn>K。

样例
    输入:int K 10
    输出:12367

说明:题目可以使用多种语言。这里使用JAVA

由于时间限制,所以使用while n+=1/n,不可行。所以我们可以从Sn=1+1/2+1/3+…+1/n下手。

在数学中“欧拉公式”给出:

1+1/2+1/3+……+1/n=ln(n+1)+C,C为欧拉常数 数值是0.5772…….

    Euler(欧拉)在1734年,利用牛顿的成果,首先获得了调和级数有限多项和的值。
    结果是: 1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量) 他的证明是这样的:
    根据牛顿的幂级数有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值