背包算法

1、0-1背包问题:

   有 n 种物品和一个能承受最大重量为 c 的背包,物品 i 的重量为w[i],价值为v[i],求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。

    解题思路:

   (1)构造一个m[n+1[c+1]的二位矩阵,m[i][j]表示在面对前 i 件物品时,且背包容量为 j 时能获取的最大价值。然后将该二维矩阵初始化为0.

   (2)当求前 i ( i从1到n进行迭代) 件物品放入容量为 j 的背包的最大价值时:

      如果第 i 件物品的重量比背包的容量 j 大,则不放第 i 件物品,此时问题转化为 “ 前 i-1 件物品放入容量为j的背包的最大价值 ”,表示为:

m[i][j] = m[i-1][j]        当  j < w[i]   

      如果第 i 件物品的重量比背包的容量 j 小,则第 i 件物品可以放进去,此时是选择放还是不放进去呢?如果放第 i 件物品,问题转化为 “ 前 i-1 件物品放入剩下的容量为 j-w[i] 的背包中获取的最大价值 ”,此时如果放进第 i 件物品后得到的价值(即:前 i-1 件物品放入剩下的容量为 j-w[i] 的背包中获取的最大价值 + 第 i 件物品的价值v[i])比不放第 i 件物品得到的前 i 件(此时已经变为前 i-1件)物品放入容量为 j 的背包中的最大价值大,则放入第 i 件物品,否则就不放入第 i 件物品,表示为:

m[i][j]=max( m[i-1][j],m[i-1][j-w[i]] + v[i] )    当 j <= w[i]    

  (3)实例:n = 6, c = 12, w[ ] = { 0,4,6,2,2,5,1 }, v[ ] = { 0,8,10,6,3,7,2 }。

    m[n+1][c+1]=0;           
    for (int i=1; i<n+1; i++)
    {
        for (int j =1; j<c+1; j++)
            {
                if ( j >= w[i] )
                    m[i][j] = max ( m[i-1][j],m[i-1] [ j - w[i] ] + v[i] ) ;
                else
                    m[i][j] = m[i-1][j];
            }
    }
    value = m[n][c];

   如何知道该拿那些物品?

   另起一个数组x[],x[i]=0表示没拿,x[i]=1表示拿了。m[n][c]为最优值,如果m[n][c] = m[n-1][c],说明有没有第n件物品都一样,则x[n]=0;否则x[n]=1。当x[n]=0时,由m[n-1][c]继续构造最优解;当x[n]=1时,由m[n-1][c-w[i]]继续构造最优解。依此类推可以构造出所有最优解。

    int y = c;
    x[n+1]=0;
    for (int i = n; i>1; i--)
    {
        if ( m[i][y]==m[i-1][y] )
            x[i] = 0;
        else
        {
            x[i] = 1;
            y -= w[i];
        }
    }
    x[1] = ( m[1][y]>0 ) ? 1 : 0 ;

2、完全背包问题:

     完全背包问题描述:有 n 种物品和一个能承受最大重量为 c 的背包,物品 i 的重量为w[i],价值为v[i],求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 

    完全背包问题与0-1背包问题的区别在于每一件物品的数量都有无限个,而0-1背包每件物品数量只有一个。

  (1)解题思路:

     由于本问题类似于0-1背包问题,在0-1背包问题中,物品要么取,要么不取,而在完全背包中,物品可以取0件、取1件、 取2件、...、取c/w[i]件为止。因此,可以直接在0-1背包的递推式中扩展得到,只需要在选取第i件物品时增加一个循环,迭代c/w[i]次,计算出选取多少件第i种物品时可以获得最大价值。

  1)初始化矩阵m[n+1][c+1],m[i][j]表示前i件物品放入容量为j的容量中时的最大收益 ;

  2)选取第i件物品时的递推式:  

      f[i][j] = max(f[i - 1][j],f[i-1][j - k* w[i]] + k*v[i])   其中  1 <= k * w[i] <= c

  实例:n=6,c=12,w[]={0,4,6,2,2,5,1},v[]={0,8,10,6,3,7,2}。

    m[n+1][c+1]={0}
    for (int i = 1;i <= n;i++)  
    {  
        for (int j = 1;j <= c;j++)  
        {  
            m[i][j] = 0;                                             # 初始化为0            
            for (int k = 0;k*w[i] <= j;k++)              # 找出最大的f[i][j]
            {  
                m[i][j] = max(m[i][j],m[i - 1] [j - k * w[i]] + k * v[i]);  
            }  
        }  
    }  
    return m[n][c];  

   复杂度分析:程序需要求解n*c个状态,每一个状态需要的时间为O(c/w[i]),总的复杂度为O(n*c*Σ(c/w[i]))。

(2)算法优化:

    我们就通过一个三重循环实现了完全背包问题。由于k循环的最坏可能是从0循环到c,所以这个算法的时间复杂度为O(n*c*c),然而,这样并不够好。 

    有心的朋友可以自己根据流程画张表看看,认真分析的话不难发现这个算法中有很多多余的计算。 在m[i][j]中选择k个情况,和在m[i][j-w[i]]中选择k-1个的情况是相同的。 那么我们注意一下m[i][j]与m[i][j-w[i]]的关系,可以发现在求m[i][j]的值时,只需要直接从m[i][j-w[i]]和m[i-1][j]两个地方取值,并找出较大的那个就行了。 这样在计算m[i][j]时就不需要用到k循环了,下面给出改进的算法。 

  for (int i = 1; i < n; i++)
    {
        for (int j = 1; j <= c; j++)
        {
            if (j < w[i])
                m[i][j] = m[i-1][j];
            else
                m[i][j] = max(m[i-1][j],m[i][ j-w[i] ]+v[i]);
        }
    }

  return m[n][c];  

  这样就将时间复杂度降低到了O(n*W)。

3、多重背包问题:

    多重背包问题描述:有 n 种物品和一个能承受最大重量为 c 的背包,物品 i 的重量为w[i],价值为v[i],个数为num[i],求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 

    多重背包和0-1背包、完全背包的区别:多重背包中每个物品的个数都是给定的,可能不是一个,绝对不是无限个。解题思路:
    多重背包问题和完全背包问题很类似,只不过对于物品i,可以取0件、1件、...、min{num[i] , c/w[i]}件,因此只需要在完全背包问题的基础上做以下改进,迭代次数改为min{c/w[i] , num[i] }件即可。

  1)初始化矩阵m[n+1][c+1],m[i][j]表示前i件物品放入容量为j的容量中时的最大收益 ;

  2)选取第i件物品时的递推式:  

      f[i][j] = max(f[i - 1][j],f[i-1][j - k* w[i]] + k*v[i]) 其中  1 <= k <=min{c/w[i] , num[i]} 

  实例:n=6,c=12,w[]={0,4,6,2,2,5,1},v[]={0,8,10,6,3,7,2},num[]={0,4,3,2,3,1,4}

    m[n+1][c+1]={0}
    for (int i = 1;i <= n;i++)  
    {  
        for (int j = 1;j <= c;j++)  
        {             
            int count = min(num[i], c/w[i]);
            m[i][j] = m[i-1][j];
            for(int k = 1; k <= count; k++)
             {
                int temp = f[i-1][j-w[i]*k] + k*v[i];
                if(temp >= m[i][j])
                     m[i][j] = temp;
             }
        }  
    }  
    return m[n][c];  

   复杂度分析:程序需要求解n*c个状态,每一个状态需要的时间为O(Σnum[i]),总的复杂度为O(n*c*Σnum[i]))。   

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值