EasyLearn--JAVA实现32个经典算法设计(四):分支定界法-旅行商(TSP)问题

分支定界法开始看的时候还是很难能通俗易懂地描述出该算法的规则和界限。顾名思义就是按名字来划分,分支可看作一个二叉树,而定界就可理解为对上述二叉树的一种约束。

具体可以参考该连接的描述:只需要看两张图片即可,如何将图转化为一颗树

还有另外一种用法是:一个箱子可装10斤重的货物,其中有三件分别中4 8 5斤可不拆分的货物,请问最多可装几斤的问题。等等可用此算法的应用。

鄙人实现的是TSP问题,模型构建、解决方案、算法实现等。话不多说上源码。

1.分支定界法的实体bean

import java.io.Serializable;
import java.util.List;

/**
 * 分支定界法的实体bean 假设来回的差旅费用不一样
 * 实体包含:城市节点编号、城市节点名称、城市节点所属层级、到达城市节点编号、到达城市节点所需费用
 */
public class BranchBound implements Serializable {
    // 城市节点编号
    private String nodeNo;
    // 城市节点名称
    private String nodeName;
    // 城市节点所属层级
    private Integer nodeLevel;
    // 到达城市节点编号
    private String arrayNodeNo;
    // 到达城市节点所需费用
    private Double arrayNodeFee;
    // 剩余没去的城市节点,节点编号
    private List<String> restNodes;

    public BranchBound(String nodeNo, String nodeName, String arrayNodeNo, Double arrayNodeFee) {
        super();
        this.nodeNo = nodeNo;
        this.nodeName = nodeName;
        this.arrayNodeNo = arrayNodeNo;
        this.arrayNodeFee = arrayNodeFee;
    }

    public String getNodeNo() {
        return nodeNo;
    }

    public void setNodeNo(String nodeNo) {
        this.nodeNo = nodeNo;
    }

    public String getNodeName() {
        return nodeName;
    }

    public void setNodeName(String nodeName) {
        this.nodeName = nodeName;
    }

    public Integer getNodeLevel() {
        return nodeLevel;
    }

    public void setNodeLevel(Integer nodeLevel) {
        this.nodeLevel = nodeLevel;
    }

    public String getArrayNodeNo() {
        return arrayNodeNo;
    }

    public void setArrayNodeNo(String arrayNodeNo) {
        this.arrayNodeNo = arrayNodeNo;
    }

    public Double getArrayNodeFee() {
        return arrayNodeFee;
    }

    public void setArrayNodeFee(Double arrayNodeFee) {
        this.arrayNodeFee = arrayNodeFee;
    }

    public List<String> getRestNodes() {
        return restNodes;
    }

    public void setRestNodes(List<String> restNodes) {
        this.restNodes = restNodes;
    }
}

2.分支界定法的MAP集合

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

/**
 * 构建分支界定法的MAP集合、该算法的难点不在于算法的本身,而在于如何构建完美二叉树和定界的问题
 * 如果城市之间的费用相差不多,那么将会导致该算法变为穷举法,每个分支都将会算到
 * 1.定义城市节点的总数量
 * 2.初始化城市节点信息以及所需的差旅费、剩余可用城市节点
 * 3.获取节点最少费用的上限值(求取思路:计算出所有节点的出边和入边最小的值,而后依据该城市节点总数量*2的边,进行扩展最终求出N*2条线,比较得出最少路径值)
 */
public class BranchBoundMap {
    // 城市数量
    private Integer nodeCount = 8;
    // 城市节点的集合
    private List<BranchBound> bbList = new ArrayList<>();
    // 存储所有出边和入边的最优路径
    private List<BranchBound> bestList = new ArrayList<>();
    // 剩余城市节点的集合,节点编号
    private List<String> restNodes = new ArrayList<>();

    public BranchBoundMap(){
        // 初始化剩余可用城市节点
        for (int i = 1; i <= nodeCount; i++){
支限界法类又称为剪枝限界法或分支定界法,它类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。它与回溯法有两点不同:①回溯法只通过约束条件剪去非可行解,而分支限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解。②在解空间树上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索的进程, 在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。 从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式: ①队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。 ②优先队列式分支限界法:优先队列式分支限界法将活结点表按照某个估值函数C(x)的值组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。 影响分支限界法搜索效率的有两个主要因素:一是优先队列Q的优先级由C(x)确定,它能否保证在尽可能早的情况下找到最优解,如果一开始找到的就是最优解,那么搜索的空间就能降低到最小。二是限界函数u(x),它越严格就越可能多地剪去分支,从而减少搜索空间。 在用分支限界法解决TSP问题时,有不少很好的限界函数和估值函数已经构造出来出了(限于篇幅,这里不做详细介绍), 使得分支限界法在大多数情况下的搜索效率大大高于回溯法。但是,在最坏情况下,该算法的时间复杂度仍然是O(n!),而且有可能所有的(n-1)!个结点都要存储在队列中。 近似算法是指不能肯定找到最优解的算法,但通常找到的也是比较好的解,或称近似最优解。[20]一般而言,近似算法的时间复杂度较低,通常都是多项式时间内的。由于近似算法的时间效率高,所以在实际应用中,主要是使用近似算法,这一类算法也一直是研究的主要对象。传统的近似算法以采用贪心策略和局部搜索为主,而几十年来,随着以遗传算法为代表的新型启发式搜索算法的逐步完善,在解决TSP问题上获得了巨大的成功。遗传算法、模拟退火算法、蚁群算法等已经成为公认的好算法。在本节中,将介绍传统的近似算法
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值