自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 问答 (1)
  • 收藏
  • 关注

原创 Logistic回归和Softmax回归

假设训练数据集为{(x1,y1),(x2,y2),...(xm, ym)},即有m个样本,令x=[x0, x1, ..., xn]T,x0=1,即每个样本有n个特征,y∈{0, 1}。假设训练数据集为{(x1,y1),(x2,y2),...(xM, yM)},即有M个样本,softmax回归使用交叉熵损失函数来学习最优的参数矩阵W,对样本进行分类。是由所有类别的后验概率组成的向量,第c个元素就是预测为第c类的概率,比如[0.05, 0.01, 0.9, 0.02, 0.02],预测为第3类。

2023-07-28 11:33:14 532 1

原创 Pytorch不调包实现线性回归

此语句的使用使得在这条语句里的所有计算都不再继续计算梯度,避免了pytorch中图的重复积累浪费内存,甚至无法运行出结果的情况。值得注意的是,这里有一个问题还卡了笔者较长时间,就是使用该语句后weight和bias的梯度从何而来,这里笔者查阅资料得到了一个认识,就是loss是关于weight和bias的函数,在执行loss.sum().backward()的时候,所有有关weight和bias的梯度都已经存在图中,在没有grad.zero_(),这些变量并不会清零,所以后面可以继续使用。

2023-04-10 21:51:11 226 2

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除