1.大数据定义:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
2.大数据技术体系
(1)开发语言:scala、Java、Python
存储:PB
(2)大户据的业务处理流程:
数据源
数据清洗
数据存储
数据分析
数据结果展示
(3)大数据主要技术构成
数据源(Flume)
数据清洗(Hive(MapReduce))
数据存储(HDFS、Hive、Impala、HBase)
数据分析(Hive、Impala、Spark)
数据结果展示,数据迁移(Sqoop)
大数据协调框架ZK、Oozie/Azk
项目实战
(4)大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
3.机器学习定义:
机器学习就是数据通过算法构建出模型并对模型进行评估,评估的性能如果达到要求就拿这个模型测试其他数据,最终获得满意的经验来处理其他数据。
学习主题:大数据环境和理解大数据相关概念
学习目标:
1.1、Linux基础--大数据简介
最新推荐文章于 2024-03-22 11:55:16 发布