Chapter 14 G-estimation of Structural Nested Models

HernKaTeX parse error: Can't use function '\'' in math mode at position 1: \̲'̲{a}n M. and Robins J. Causal Inference: What If.

前面已经介绍过了Standardization 和 IP weighting, 这里在介绍另外一种方法: G-estimation.

14.1 The causal question revisited

14.2 Exchangeability revisited

Y a ⨿ A ∣ L Y^a \amalg A | L Ya⨿AL, 即
P r [ Y a ∣ A , L ] = P r [ Y a ∣ L ] . \mathrm{Pr}[Y^a|A,L] = \mathrm{Pr}[Y^a|L]. Pr[YaA,L]=Pr[YaL].
但是我们也可以这么理解:
P r [ A ∣ Y a , L ] = P r [ A ∣ L ] . \mathrm{Pr}[A|Y^a,L] = \mathrm{Pr}[A|L]. Pr[AYa,L]=Pr[AL].
于是我们可以假设, 此概率为一个logistic模型:
l o g i t P r [ A = 1 ∣ Y a = 0 , L ] = α 0 + α 1 Y a = 0 + α 2 L . \mathrm{logit} \mathrm{Pr} [A=1|Y^{a=0}, L] = \alpha_0 + \alpha_1Y^{a=0} + \alpha_2 L. logitPr[A=1Ya=0,L]=α0+α1Ya=0+α2L.
既然我们已经假设了条件可交换性, 那么正常来讲, α 1 = 0 \alpha_1 = 0 α1=0.
g-estimation方法就是利用了这一点, 通过构造 Y a = 0 Y^{a=0} Ya=0和我们所要求的causal effect之间的联系来估计参数.

14.3 Structural nested mean models

之前介绍过marginal model
E [ Y a ] = β 0 + β 1 a . \mathbb{E}[Y^a] = \beta_0 + \beta_1 a. E[Ya]=β0+β1a.
此时我们需要估计两个参数, 但是倘若我们关注的只是causal effect, 那么我们完全可以
E [ Y a − Y a = 0 ] = β 1 a , \mathbb{E}[Y^{a} - Y^{a=0}] = \beta_1a, E[YaYa=0]=β1a,
此时就只需要估计一个参数, 这是能够防止bias的.

在扩展到strata中:
E [ Y a − Y a = 0 ∣ A = a , L ] = β 1 a + β 2 a L . \mathbb{E}[Y^a - Y^{a=0}|A=a, L] = \beta_1a + \beta_2 a L. E[YaYa=0A=a,L]=β1a+β2aL.

注: β 2 L = ∑ j β 2 j L j \beta_2 L = \sum_{j} \beta_{2j} L_j β2L=jβ2jLj.

14.4 Rank preservation

指的是, intervention A A A对于每个个体所带来的变化都是固定, 即
Y i a − Y i a = 0 = ψ 1 a . Y_i^a - Y_i^{a=0} = \psi_1a. YiaYia=0=ψ1a.
相应的还有 conditional rank preservation
Y i a − Y i a = 0 = ψ 1 a + ψ 2 a L i . Y_i^a -Y_i^{a=0} = \psi_1a + \psi_2a L_i. YiaYia=0=ψ1a+ψ2aLi.
所以, rank preservation的意思就是, 经过intervention的干预, 个体间的排名不发生变化(因为效果是相同的).

14.5 G-estimation

这里我们关注:
E [ Y a − Y a = 0 ∣ A = a , L ] = β 1 a , \mathbb{E}[Y^a - Y^{a=0}|A=a, L] = \beta_1a, E[YaYa=0A=a,L]=β1a,
则根据条件可交换性可知, β 1 \beta_1 β1就是我们所关注的causal effect.
当然这个情况是简化的, 直接舍去的 β 2 α L \beta_2 \alpha L β2αL, 但是思想是类似的.

倘若
Y a = 0 = Y a − ψ 1 a , Y^{a=0} = Y^a - \psi_1a, Ya=0=Yaψ1a,
即满足rank preservation.
注意到, 等式右边实际上就是
Y a = 0 = Y − ψ 1 A . Y^{a=0} = Y - \psi_1 A. Ya=0=Yψ1A.
回到最开始的logistic模型, 我们得到:
l o g i t P r [ A = 1 ∣ Y a = 0 , L ] = α 0 + α 1 ( Y − ψ 1 A ) + α 2 L . \mathrm{logit} \mathrm{Pr} [A=1|Y^{a=0}, L] = \alpha_0 + \alpha_1(Y-\psi_1 A)+ \alpha_2 L. logitPr[A=1Ya=0,L]=α0+α1(Yψ1A)+α2L.
对于不同的 ψ 1 \psi_1 ψ1, 关于上式我们有不同的估计, 但是该估计可能 α 1 ≠ 0 \alpha_1\not=0 α1=0或者不在0附件, 这说明我们假设的 ψ 1 \psi_1 ψ1可能并不合理.
换言之, 我们认为 ψ 1 \psi_1 ψ1的合适的估计应该使得 α 1 \alpha_1 α1的估计在0附近, 且越接近我们认为估计的越好.
这就是g-estimation.
特殊的情况也是可以的:
l o g i t P r [ A = 1 ∣ Y a = 0 , L ] = α 0 + α 1 ( Y − ψ 1 A − ψ 2 L ) + α 2 L . \mathrm{logit} \mathrm{Pr} [A=1|Y^{a=0}, L] = \alpha_0 + \alpha_1(Y-\psi_1 A - \psi_2 L)+ \alpha_2 L. logitPr[A=1Ya=0,L]=α0+α1(Yψ1Aψ2L)+α2L.
此时要估计多个参数了.
另外其实我没能很好get到数学的内核.

14.6 Structural nested models with two or more parameters

Fine Point

Relation between marginal structural models and structural nested models

Sensitivity analysis for unmeasured confounding

Technical Point

Multiplicative structural nested mean models

G-estimation of structural nested mean models

score test …

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值