【PAT甲级 单源最短路径】1087 All Roads Lead to Rome (30 分)

字符串索引图,使用了map映射,用了一些不常用的知识,能这么写出来很开心


这么写可以使得map的默认值为INF而不是值初始化的0


struct defaultCost{
    int cost;
    defaultCost():cost(INF){}; // 更改不存在key的map的默认value值为INF
    defaultCost(int c):cost(c){}
};
map<string, defaultCost> cost; // 之前的dist数组,改名了

当点的编号不是数字而是字符串的时候使用map是个不错的方法

map<string, vector<Node> > G;  // 边权
map<string, int> V;    // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
map<string, bool> vis;
map<string, vector<string>> pre;

Dijkstra + DFS

# include <iostream>
# include <algorithm>
# include <vector>
# include <map>
using namespace std;

const int MAXV = 210;
const int INF  = 0xffffff;

struct Node{
    string name;
    int cost;
};
// 设一个结构体并赋予初值就可以设定访问map不存在的key时的默认value值
struct defaultCost{
    int cost;
    defaultCost():cost(INF){}; // 更改不存在key的map的默认value值为INF
    defaultCost(int c):cost(c){}
};

map<string, vector<Node> > G;  // 边权
map<string, int> V;    // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
map<string, bool> vis;
map<string, vector<string>> pre;

int N, K;
string st, ed = "ROM";

void Dijsktra(string s){
    cost[s] = 0;
    for(int i = 0;i < N;++i){
        string u = "000";
        int MIN = INF;
        for(auto p: V){
            string j = p.first;
            if(vis[j] == false && cost[j].cost < MIN){
                u = j;
                MIN = cost[j].cost;
            }
        }
        if(u == "000") return;
        vis[u] = true;
        for(Node next: G[u]){
            string v = next.name;
            int uv_cost = next.cost;
            if(vis[v] == false){
                if(cost[u].cost + uv_cost  < cost[v].cost){
                    cost[v].cost = cost[u].cost + uv_cost;
                    pre[v].clear();
                    pre[v].push_back(u);
                } 
                else
                if(cost[u].cost + uv_cost == cost[v].cost){
                    pre[v].push_back(u);
                }
            }
        }
    }
    
}

vector<string> path, tempPath;
int routes = 0; // 相等cost的路径数量
int maxSumHappyness = -1; // 最大快乐值;
double maxAvgHappyness = -1; // 最大平均快乐值
void DFS(string v){
    if(v == st){
        routes++;
        tempPath.push_back(st);

        int sumhappyness = 0;
        double avghappyness = 0.0;
        for(string id: tempPath){
            sumhappyness += V[id];
        } 
        avghappyness = sumhappyness / (tempPath.size() - 1);
        if(sumhappyness > maxSumHappyness){
            maxSumHappyness = sumhappyness;
            maxAvgHappyness = avghappyness;
            path = tempPath;
        }
        else
        if(sumhappyness == maxSumHappyness){
            if(avghappyness > maxAvgHappyness){
                maxAvgHappyness = avghappyness;
                path = tempPath;  
            }
        }

        tempPath.pop_back();
        return;
    }

    tempPath.push_back(v);
    for(string u: pre[v]){
        DFS(u);
    }
    tempPath.pop_back();
}


int main(){
    cin >> N >> K >> st;
    for(int i = 0;i < N-1;++i){ // 不输入起点的开心值,所以要N-1,并且给起点得到开心值初始化为0(被坑了)
        string city; 
        int happy;
        cin >> city >> happy;
        V[city] = happy;
    }V[st] = 0;
    for(int i = 0;i < K;++i){
        string city1, city2; 
        int cost;
        cin >> city1 >> city2 >> cost;
        G[city1].push_back({city2, cost});
        G[city2].push_back({city1, cost});
    }
    Dijsktra(st);
    DFS(ed);
    printf("%d %d %d %.0f\n",routes, cost[ed].cost, maxSumHappyness, maxAvgHappyness);
    for(int i = path.size() - 1;i >= 0;--i){
        cout << path[i];
        if(i != 0) 
            cout << "->";
        else 
            cout << "\n";
    }
    
    return 0;
}

使用优先队列优化

# include <iostream>
# include <algorithm>
# include <vector>
# include <map>
# include <unordered_map>
# include <queue>

using namespace std;

const int MAXV = 210;
const int INF  = 0xffffff;

struct Node{
    string name;
    int cost;
};
// 设一个结构体并赋予初值就可以设定访问map不存在的key时的默认value值
struct defaultCost{
    int cost;
    defaultCost():cost(INF){}; // 记得添上一个默认函数(优先队列优化时这个还是必要的)
    defaultCost(int c):cost(c){}
};

map<string, vector<Node> > G;  // 边权
map<string, int> V;    // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
// map<string, bool> vis; // 优先队列优化时不需要visit数组
map<string, vector<string>> pre;

// first是起点到second点的距离,second是顶点的名字
typedef pair<int, string> Pair; 
// 使用优先级队列,因为pair有比较运算,所以可直接传入
priority_queue<Pair, vector<Pair>, greater<Pair>> Q; 


int N, K;
string st, ed = "ROM";

void Dijsktra(string s){
    cost[s] = 0;
    Q.push({cost[s].cost, s}); // push入起点
    while(!Q.empty()){
        Pair p = Q.top();Q.pop();
        string u = p.second;
        if(cost[u].cost < p.first) continue;
        for(Node next: G[u]){
            string v = next.name;
            int uv_cost = next.cost;
            if(cost[u].cost + uv_cost  < cost[v].cost){
                cost[v].cost = cost[u].cost + uv_cost;
                Q.push({cost[v].cost ,v}); // push入更短的Pair
                pre[v].clear();
                pre[v].push_back(u);
            } 
            else
            if(cost[u].cost + uv_cost == cost[v].cost){
                pre[v].push_back(u);
            }
        }
    }
    
}

vector<string> path, tempPath;
int routes = 0; // 相等cost的路径数量
int maxSumHappyness = -1; // 最大快乐值;
double maxAvgHappyness = -1; // 平均快乐值
void DFS(string v){
    if(v == st){
        routes++;
        tempPath.push_back(st);

        int sumhappyness = 0;
        double avghappyness = 0.0;
        for(string id: tempPath){
            sumhappyness += V[id];
        } 
        avghappyness = sumhappyness / (tempPath.size() - 1);
        if(sumhappyness > maxSumHappyness){
            maxSumHappyness = sumhappyness;
            maxAvgHappyness = avghappyness;
            path = tempPath;
        }
        else
        if(sumhappyness == maxSumHappyness){
            if(avghappyness > maxAvgHappyness){
                maxAvgHappyness = avghappyness;
                path = tempPath;  
            }
        }

        tempPath.pop_back();
        return;
    }

    tempPath.push_back(v);
    for(string u: pre[v]){
        DFS(u);
    }
    tempPath.pop_back();
}


int main(){
    cin >> N >> K >> st;
    for(int i = 0;i < N-1;++i){ // 不输入起点的开心值,所以要N-1,并且给起点得到开心值初始化为0(被坑了)
        string city; 
        int happy;
        cin >> city >> happy;
        V[city] = happy;
    }V[st] = 0;
    for(int i = 0;i < K;++i){
        string city1, city2; 
        int cost;
        cin >> city1 >> city2 >> cost;
        G[city1].push_back({city2, cost});
        G[city2].push_back({city1, cost});
    }
    Dijsktra(st);
    DFS(ed);
    printf("%d %d %d %.0f\n",routes, cost[ed].cost, maxSumHappyness, maxAvgHappyness);
    for(int i = path.size() - 1;i >= 0;--i){
        cout << path[i];
        if(i != 0) 
            cout << "->";
        else 
            cout << "\n";
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值