GaussDB(DWS)常见的查询时索引失效场景

使用GaussDB(DWS)时,有时为了加快查询速度,需要对表建立索引。有时我们会遇到明明建立了索引,查询计划中却发现索引没有被使用的情况。本文将列举几种常见的场景和优化方法。

1. 返回结果集很大

以行存表的Seq Scan和Index Scan为例:

Seq Scan:就是按照表的记录的排列顺序从头到尾依次检索扫描,每次扫描要取到所有的记录。这也是最简单最基础的扫表方式,扫描的代价比较大;

Index Scan:对于给定的查询,先扫描一遍索引,从索引中找到符合要求的记录的位置(指针),再定位到表中具体的Page去取,即先走索引,再读表数据;

因此,根据两种扫描方式的特点可以看出,大多数情况下,Index Scan要比Seq Scan快。但是如果获取的结果集占所有数据的比重很大时(超过70%),这时Index Scan 因为要先扫描索引再读表数据反而不如直接全表扫描来的快。

2. 没有analyze

analyze会更新表的统计信息,如果表未做analyze或上次做完analyze之后表进行过数据量较大的增删操作,会导致统计信息不准,这时候也可能导致表没有走索引。

优化方法:对表进行analyze更新统计信息即可。

3. 过滤条件使用了函数或隐式类型转化导致没有走索引

如果再过滤条件中使用了计算、函数、隐式类型转化,都可能导致无法选择索引。

示例:create table test(a int, b text, c date); 且在a,b,c三列上都分别创建了索引。

场景1:使用计算

从下面的执行结果可以看到,where a = 101,where a = 102 - 1都能使用a列上的索引,但是where a + 1 = 102没有走索引。

postgres=# explain verbose select * from test where a + 1 = 102;
                            QUERY PLAN                             
-------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.19..18.25 rows=6 width=14)
   Output: a, b, c
   Node/s: All datanodes
   ->  Seq Scan on public.test  (cost=0.00..12.25 rows=6 width=14)
         Output: a, b, c
         Distribute Key: a
         Filter: ((test.a + 1) = 102)
(7 rows)


postgres=# 
postgres=# explain verbose select * from test where a  = 101;
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.06..14.27 rows=1 width=14)
   Output: a, b, c
   Node/s: datanode1
   ->  Index Scan using test_a_idx on public.test  (cost=0.00..8.27 rows=1 width=14)
         Output: a, b, c
         Distribute Key: a
         Index Cond: (test.a = 101)
(7 rows)


postgres=# 
postgres=# explain verbose select * from test where a  = 102 - 1;
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.06..14.27 rows=1 width=14)
   Output: a, b, c
   Node/s: datanode1
   ->  Index Scan using test_a_idx on public.test  (cost=0.00..8.27 rows=1 width=14)
         Output: a, b, c
         Distribute Key: a
         Index Cond: (test.a = 101)
(7 rows)

优化方式:此类场景的优化方式是尽量使用常量代替表达式,或者常量计算尽量写在等号的右侧。

场景2:使用函数

从下面的执行结果可以看到,在索引列上使用函数也会导致无法选择索引:

postgres=# explain verbose select * from test where to_char(c, 'yyyyMMdd') = to_char(CURRENT_DATE,'yyyyMMdd');
                                                           QUERY PLAN                                                            
---------------------------------------------------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.19..21.00 rows=6 width=14)
   Output: a, b, c
   Node/s: All datanodes
   ->  Seq Scan on public.test  (cost=0.00..15.00 rows=6 width=14)
         Output: a, b, c
         Distribute Key: a
         Filter: (to_char(test.c, 'yyyyMMdd'::text) = to_char(('2021-03-16'::date)::timestamp with time zone, 'yyyyMMdd'::text))
(7 rows)



postgres=# 
postgres=# explain verbose select * from test where c = current_date;
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.06..14.27 rows=1 width=14)
   Output: a, b, c
   Node/s: All datanodes
   ->  Index Scan using test_c_idx on public.test  (cost=0.00..8.27 rows=1 width=14)
         Output: a, b, c
         Distribute Key: a
         Index Cond: (test.c = '2021-03-16'::date)
(7 rows)

 

优化方法:尽量减少索引列上没有必要的函数调用。

场景3:隐式类型转化

此类场景是经常遇到的场景,例如b的类型是text类型,过滤条件是where b = 2,在生成计划时,text类型会隐式转化为bigint类型,实际的过滤条件变成where b::bigint = 2,导致b列上的索引失效:

postgres=# explain verbose select * from test where b = 2;
                            QUERY PLAN                             
-------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.06..18.25 rows=1 width=14)
   Output: a, b, c
   Node/s: All datanodes
   ->  Seq Scan on public.test  (cost=0.00..12.25 rows=1 width=14)
         Output: a, b, c
         Distribute Key: a
         Filter: ((test.b)::bigint = 2)
(7 rows)



postgres=# 
postgres=# explain verbose select * from test where b = '2';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=0.06..14.27 rows=1 width=14)
   Output: a, b, c
   Node/s: All datanodes
   ->  Index Scan using test_b_idx on public.test  (cost=0.00..8.27 rows=1 width=14)
         Output: a, b, c
         Distribute Key: a
         Index Cond: (test.b = '2'::text)
(7 rows)

优化方法:索引条件上的常量尽可能使用和索引列相同类型的常量,避免发生隐式类型转化。

4. 使用nestloop + indexscan 代替 hashjoin

此类语句的特征是两个表关联的时候,其中一个表上where条件过滤之后的结果集行数很小,同时,最终满足条件的结果集行数也很小。此时,使用nestloop+indexscan的效果往往要由于hashjoin。较优的执行计划如下:

可以看到,第5层的Index Cond: (t1.b = t2.b)已经把join条件下推到了基表扫描上。

postgres=# explain verbose select t1.a,t1.b from t1,t2 where t1.b=t2.b and t2.a=4;
 id |                    operation                     | E-rows | E-distinct | E-memory | E-width | E-costs 
----+--------------------------------------------------+--------+------------+----------+---------+---------
  1 | ->  Streaming (type: GATHER)                     |     26 |            |          |       8 | 17.97
  2 |    ->  Nested Loop (3,5)                         |     26 |            | 1MB      |       8 | 11.97
  3 |       ->  Streaming(type: BROADCAST)             |      2 |            | 2MB      |       4 | 2.78
  4 |          ->  Seq Scan on public.t2               |      1 |            | 1MB      |       4 | 2.62
  5 |       ->  Index Scan using t1_b_idx on public.t1 |     26 |            | 1MB      |       8 | 9.05
(5 rows)

 Predicate Information (identified by plan id) 
-----------------------------------------------
   4 --Seq Scan on public.t2
         Filter: (t2.a = 4)
   5 --Index Scan using t1_b_idx on public.t1
         Index Cond: (t1.b = t2.b)
(4 rows)

 Targetlist Information (identified by plan id) 
------------------------------------------------
   1 --Streaming (type: GATHER)
         Output: t1.a, t1.b
         Node/s: All datanodes
   2 --Nested Loop (3,5)
         Output: t1.a, t1.b
   3 --Streaming(type: BROADCAST)
         Output: t2.b
         Spawn on: datanode2
         Consumer Nodes: All datanodes
   4 --Seq Scan on public.t2
         Output: t2.b
         Distribute Key: t2.a
   5 --Index Scan using t1_b_idx on public.t1
         Output: t1.a, t1.b
         Distribute Key: t1.a
(15 rows)

   ====== Query Summary =====    
---------------------------------
 System available mem: 9262694KB
 Query Max mem: 9471590KB
 Query estimated mem: 5144KB
(3 rows)

如果优化器没有选择这种执行计划,可以通过以下方式优化:

set enable_index_nestloop = on;

set enable_hashjoin = off;

set enable_seqscan = off;

5. 使用hint指定索引时指定的索引方式不对

GaussDB(DWS)的plan hint当前支持指定的Scan方式有三种:tablescan、indexscan和indexonlyscan。

tablescan:全表扫描,比如行存表的Seq Scan,列存表的CStore Scan

indexscan:先扫索引,再根据索引取表记录

indexonlyscan:覆盖索引扫描,所需的返回结果能被所扫描的索引全部覆盖。与index scan相比,index only scan所包含的字段集合,囊括了我们查询语句中的字段,这样,提取出相应的index ,就不必再根据索引取表记录了。

因此,对于需要indexonlyscan的场景,如果hint指定了indexscan,该hint是无法生效的:

postgres=# 
explain verbose select/*+ indexscan(test)*/ b from test where b = '1';
WARNING:  unused hint: IndexScan(test)
                             QUERY PLAN                             
--------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=3.12..16.88 rows=100 width=2)
   Output: b
   Node/s: All datanodes
   ->  Seq Scan on public.test  (cost=0.00..10.88 rows=100 width=2)
         Output: b
         Distribute Key: a
         Filter: (test.b = '1'::text)
(7 rows)


postgres=# 
postgres=# explain verbose select/*+ indexonlyscan(test)*/ b from test where b = '1';
                                         QUERY PLAN                                         
-----------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=3.12..56.51 rows=100 width=2)
   Output: b
   Node/s: All datanodes
   ->  Index Only Scan using test_b_idx on public.test  (cost=0.00..50.51 rows=100 width=2)
         Output: b
         Distribute Key: a
         Index Cond: (test.b = '1'::text)
(7 rows)

优化方法:使用hint时正确指定indexscan和indexonlyscan。

6. 全文检索gin索引

为了加速文本搜索,进行全文检索时可以创建GIN索引:

create index idxb on test using gin(to_tsvector('english',b));

创建索引时,必须使用to_tsvector的两参数版本,并且只有当查询时也使用了两参数版本,且参数值与索引中相同时,才会使用该索引:

postgres=# explain verbose select  * from test where to_tsvector(b) @@ to_tsquery('cat') order by 1;
                                QUERY PLAN                                
--------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=22.23..27.87 rows=12 width=14)
   Output: a, b, c
   Merge Sort Key: test.a
   Node/s: All datanodes
   ->  Sort  (cost=21.86..21.87 rows=12 width=14)
         Output: a, b, c
         Sort Key: test.a
         ->  Seq Scan on public.test  (cost=0.00..21.78 rows=11 width=14)
               Output: a, b, c
               Distribute Key: a
               Filter: (to_tsvector(test.b) @@ '''cat'''::tsquery)
(11 rows)


postgres=# 
postgres=# explain verbose select  * from test where to_tsvector('english',b) @@ to_tsquery('cat') order by 1;
                                            QUERY PLAN                                             
-----------------------------------------------------------------------------------------
 Streaming (type: GATHER)  (cost=16.09..22.03 rows=2 width=14)
   Output: a, b, c
   Merge Sort Key: test.a
   Node/s: All datanodes
   ->  Sort  (cost=16.03..16.03 rows=2 width=14)
         Output: a, b, c
         Sort Key: test.a
         ->  Bitmap Heap Scan on public.test  (cost=12.00..16.02 rows=1 width=14)
               Output: a, b, c
               Distribute Key: a
               Recheck Cond: (to_tsvector('english'::regconfig, test.b) @@ '''cat'''::tsquery)
               ->  Bitmap Index Scan on idxb  (cost=0.00..12.00 rows=1 width=0)
                     Index Cond: (to_tsvector('english'::regconfig, test.b) @@ '''cat'''::tsquery)
(13 rows)

优化方式:查询时也使用了两参数版本,且保证参数值与索引中相同。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值