python 协程池配合多进程、开多核、使用

本文介绍了如何使用Python的multiprocessing和gevent库实现数据分块下载,通过Process和Pool进行并行处理,提高效率。主要展示了如何通过Monkey Patch和Pool.map来加速image_downloader函数的工作。
摘要由CSDN通过智能技术生成
import multiprocessing
from gevent import monkey
monkey.patch_all()
from gevent.pool import Pool
def main()
	mid = len(datas) // 2 # data 要执行的数据列表 mid取列表的中间值
	    jobs = []
	    for x in range(2): # 开两个核
	        p = multiprocessing.Process(target=image_downloader, args=(datas[x * mid:(x + 1) * mid], x)) #x 两个核  每个核中取一半的数据加入到进程中
	        p.start()
	        jobs.append(p)
	    for job in jobs:
	        job.join()

def image_downloader(img_urls, num):
	pool = Pool(5)
	def  handle():
		pass #要执行的函数
	pool.map(handle, img_urls)

main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值