算法自学__背包问题

参考资料:

01背包

问题描述

一共有N件物品, 第i件物品的重量为w[i], 价值为v[i]. 在总重量不超过背包容量W的情况下, 物品的最大价值是多少

算法思路

  • 定义状态dp[i][j], 表示用容量为j的背包, 在前i件物品中选择, 能获得的最大价值. 易知: dp[N][W]即为问题的答案.
  • 状态转移: 假设待求状态为dp[i][j], 此时我们需要考虑,我们是否将第i件物品放入背包中:
    1. 若不能, dp[i][j] = dp[i-1][j];

    2. 若能, 我们需要考虑是否将第i件物品放入到背包中:

      1. 假设我们不将其放入背包中, 则dp[i][j] = dp[i-1][j];
      2. 假设我们将其放入背包中, 就相当于背包中已经一部分容量被第i件物品占据, dp[i][j] = dp[i-1][j-w[i]] + v[i].

      所以dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])

代码实现
#include<iostream>
#include<algorithm>
using namespace std;
int dp[105][1005];
int w[105], v[105];
int W, N;
int main() {
	cin >> W >> N;
	for (int i = 1; i <= N; i++) cin >> w[i] >> v[i];
	for (int i = 1; i <= N; i++) {
		for (int j = 1; j <= W; j++) {
			if (w[i] > j) dp[i][j] = dp[i - 1][j];
			else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
	cout << dp[N][W];
	return 0;
}

算法优化

观察状态转移方程, 我们容易发现: dp[i][j]的值只与dp[i-1][0~j]有关. 因此, 我们可以从空间的角度优化上面的算法, 将二维状态dp[i][j]降至一维dp[j].

#include<iostream>
#include<algorithm>
using namespace std;
int dp[1005];
int w[105], v[105];
int W, N;
int main() {
	cin >> W >> N;
	for (int i = 1; i <= N; i++)cin >> w[i] >> v[i];
	for (int i = 1; i <= N; i++) {		
		for (int j = W; j >= w[i]; j--) {			//逆序更新
			dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
		}
	}
	cout << dp[W];
	return 0;
}

完全背包

问题描述

一共有N种物品, 每种物品有无限多个, 第i种物品的重量为w[i], 价值为v[i]. 在总重量不超过背包容量W的前提下, 物品的最大价值是多少.

算法思路

  • 状态dp[i][j]的定义方式与01背包相同: 表示用容量为j的背包, 在前i种物品中选择, 能获得的最大价值.
  • 状态转移:
    1. 装不下不装的情形都与01背包的处理方式一致.
    2. 由于第i种物品有无限多个, 所以我们选择装入一个i物品后, 还可以继续装入i物品, 所以,此时dp[i][j] = dp[i][j-w[i]] + v[i]
    所以, 状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]] + v[i])
  • 类似的, 我们也可以仿照01背包的优化方法, 对完全背包问题的状态进行优化
代码实现
#include<iostream>
#include<algorithm>
using namespace std;
long long dp[10000005];
int w[10005],v[10005];C++
int W,N;
int main(){
	cin>>W>>N;
	for(int i=1;i<=N;i++) cin>>w[i]>>v[i];
	for(int i=1;i<=N;i++){
		for(int j=w[i];j<=W;j++){			//正序更新
			dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
		}
	} 
	cout<<dp[W];
	return 0;
}

多重背包

问题描述

一共有N种物品, 第i种物品的数量为n[i], 重量为w[i], 价值为v[i]. 在总重量不超过背包容量W的前提下, 物品的最大价值是多少.

算法思想

这里直接给出一种优化算法, 其基本思想为将多重背包转化为01背包:

  • 对于第i物品, 我们根据其数量n[i], 按照二进制的方式将其划分为x物体, 例如对n[i]=12, 由于12 = 1 + 2 + 4 + 5, 所以我们可以将第i物品划分成4物体, 其重量价值分别为第i物品的1, 2, 4, 5倍.
  • 特别地, 假设第i种物品有无限多个, 我们将其数量n[i]赋值为一个足够大的值, 如99999999.
  • 之后便可以采用01背包的思路对问题进行求解.

我们以洛谷P1833 - - - 樱花为例

代码实现
#include<iostream>
#include<algorithm>
#define INF 999999
using namespace std;
int dp[1005];
int n[10005],w[10005],v[10005];
int newW[10000005],newV[10000005];
int h1,m1,h2,m2,W,N,cnt=0;
void pre(){			//化多重背包为01背包
	for(int i=1;i<=N;i++){
		int a=1;
		while(n[i]>0){
			if(n[i]<a){
				cnt++;
				newW[cnt]=w[i]*n[i];
				newV[cnt]=v[i]*n[i];
				break;
			}
			n[i]-=a;
			cnt++;
			newW[cnt]=w[i]*a;
			newV[cnt]=v[i]*a;
			a*=2;
		}
	}
} 
int main(){
	scanf("%d:%d %d:%d",&h1,&m1,&h2,&m2);
	W=(h2*60+m2)-(h1*60+m1);
	cin>>N;
	for(int i=1;i<=N;i++){
		cin>>w[i]>>v[i]>>n[i];
		if(n[i]==0) n[i]=INF;
	}
	pre(); 
	for(int i=1;i<=cnt;i++){
		for(int j=W;j>=newW[i];j--){
			dp[j]=max(dp[j],dp[j-newW[i]]+newV[i]);
		}
	}
	cout<<dp[W];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值