问题
在有些任务中,我们需要实现梯度反转层(Gradient Reversal Layer),目的是为了在梯度反向传播时,经过计算图某个节点之后梯度往反向更新(DANN网络中便需要GRL)。pytorch提供了Function用于实现这个方法,但是看网上的博客并没有详细的实现方法的用法。
实现方式
pytorch中的Function
pytorch自定义layer有两种方式:
- 通过继承
torch.nn.Module类来实现拓展。只需重新实现__init__和forward函数。 - 通过继承
torch.autograd.Function,除了要实现__init__和forward函数,还要实现backward函数(就是自定义求导规则)。
方式一看着简单,但是当要定义自己的求导方式时,就要自己实现backward,也就是所谓的Extending torch.autograd
关于Function的学习可以参看这个博客:https://blog.csdn.net/qq_27825451/article/details/95189376
因为可以自定义求导的方式,所以我们使用Function实现GRL
实现代码
定义一些无关的类便于测试使用
from typing import Any, Optional, Tuple
from torch.autograd import Function
import torch.nn as nn
import torch
import torch.optim as optim
import torch.nn.functional as F
import random
import numpy
random.seed(0)
torch.manual_seed(0)
numpy.random.seed(0)
第一种实现方式
- 定义一个继承自
Function的GradientReverseFunction
class GradientReverseFunction(Function):
"""
重写自定义的梯度计算方式
"""
@staticmethod
def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor:
ctx.coeff = coeff
output = input * 1.0
return output
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]:
return grad_output.neg() * ctx.coeff, None
- 在需要反转的代码中使用GRF
class NormalClassifier(nn.Module):
def __init__(self, num_features, num_classes, GRL=None):
super().__init__()
self.linear = nn.Linear(num_features, num_classes)
if GRL:
self.grl = GRL()
def forward(self, x):
if getattr(self, 'grl', None) is not None:
x = GradientReverseFunction.apply(x) # 注意这里
return self.linear(x)
第二种实现方式
如果感觉刚才使用apply的应用方式不习惯,可以包装成一个层
- 把第一种方式中的
GradientRevers

本文介绍了如何在PyTorch中使用Function实现梯度反转层(GRL),以用于域适应网络(DANN)。通过两种不同的实现方式展示了如何在自定义层中应用GRL,详细解释了代码实现过程,并通过测试代码展示了GRL在反向传播中梯度反转的效果。
最低0.47元/天 解锁文章
3370

被折叠的 条评论
为什么被折叠?



