Captin for mac(大小写切换悬浮窗提示)

Captin for ma是一款运行在MacOS上的大小写切换悬浮窗提示工具。Captin中文版体积小巧,停驻在菜单栏上,可以即时的显示大小写的状态并通过声音或图像展示给你,你还可以自定义它的LED颜色。使用简单方便。

测试环境:MacOS 10.14.6

在这里插入图片描述

Captin for mac安装教程
Captin下载完成后,双击.pkg文件,根据安装器提示即可完成安装。

在这里插入图片描述

Captin中文版功能特色
多种通知方式

视觉和声学

平视显示器

即时的视觉反馈。

菜单栏图标

可自定义的LED颜色。

码头图标

主题感知的停靠图标样式。

客制化

颜色,持续时间,大小,声音

多种显示

调整每个显示器的位置

薄型模式

以最低的系统资源要求工作

更新日志
v1.1.5

无法获取显示预览信息的某些型号的问题。

### Python 和 OpenCV 进行数字图像处理项目示例 #### 安装必要的库 为了顺利运行图像处理程序,需确保已安装所需的Python库。这包括OpenCV、NumPy以及其他可能用到的科学计算包[^2]。 ```bash pip install opencv-python-headless numpy scipy ``` #### 基础功能实现——读取与展示图片 下面是一个简单的例子来加载并显示一张彩色照片: ```python import cv2 # 加载图像 image_path = 'path_to_image/image.jpg' img_bgr = cv2.imread(image_path) if img_bgr is None: raise FileNotFoundError(f"The image at {image_path} was not found.") # 将BGR颜色空间转换为RGB以便于matplotlib正确渲染色彩 img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) from matplotlib import pyplot as plt plt.figure(figsize=(8, 6)) plt.axis('off') plt.imshow(img_rgb) plt.show() ``` 这段代码展示了如何利用`cv2.imread()`函数从磁盘上读入一幅图像,并通过Matplotlib将其可视化出来[^1]。 #### 实现具体的应用场景—面部检测 这里给出一个稍微复杂一点的例子:对面部进行定位并提取感兴趣区域(ROI),之后再对该部分做灰度化处理[^3]。 ```python import cv2 from matplotlib import pyplot as plt def detect_face_and_convert_gray(image_path): face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") # Load the input image and convert it to grayscale. img_color = cv2.imread(image_path) if img_color is None: raise FileNotFoundError(f"The image at {image_path} was not found.") gray_img = cv2.cvtColor(img_color, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: roi_color = img_color[y:y+h, x:x+w] # Convert ROI into grayscale roi_gray = cv2.cvtColor(roi_color, cv2.COLOR_BGR2GRAY) return roi_gray return None detected_roi = detect_face_and_convert_gray('images/captin_marvel.jpg') if detected_roi is not None: plt.imshow(detected_roi, cmap='gray') plt.title("Detected Face Region of Interest") plt.axis('off') plt.show() else: print("No face detected!") ``` 上述脚本实现了自动识别人脸的功能,并截取出人脸所在位置作为新的子图元用于后续分析或保存。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值