一. RAG技术概述
1.1 什么是RAG?
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种将信息检索与文本生成相结合的技术,通过实时从外部知识库中检索相关文档,增强大语言模型(LLM)的生成准确性和事实性。其核心价值在于解决LLM的三大痛点:
-
知识固化:预训练数据无法实时更新
-
幻觉问题:生成内容缺乏事实依据
-
领域局限:难以直接处理专业领域问题
典型应用场景:
-
智能客服(如阿里小蜜日均处理千万级问答)
-
法律/医疗领域专业问答
-
企业知识库增强(如微软将RAG集成到Copilot)
-
二. RAG如何增强大模型能力
2.1 核心增强机制
-
动态知识注入:每次生成前检索最新资料(如股票实时数据)
-
证据可追溯:生成结果附带参考文档片段
-
长文本处理:通过检索压缩超长上下文(如处理100页PDF)
案例对比:
2.2 技术优势
-
低成本:无需微调即可适配新领域
-
可解释性:检索结果提供生成依据
-
安全性:通过知识库过滤敏感内容
三. RAG核心原理与全流程解析
3.1 技术架构图
Markup
用户提问 → 向量化 → 检索 → 文档排序 → 上下文构建 → LLM生成 → 输出
3.2 分阶段详解
阶段1:数据预处理与索引
代码示例:构建向量数据库(使用FAISS)
Python
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# 加载嵌入模型
encoder = SentenceTransformer('all-MiniLM-L6-v2')
# 假设documents是加载的文本列表
documents = ["大模型原理...", "RAG技术优点..."]
embeddings = encoder.encode(documents)
# 创建FAISS索引
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
# 保存索引
faiss.write_index(index, "rag_index.faiss")
阶段2:实时检索与重排序
代码示例:检索Top-K文档
Python
def retrieve(query: str, k=5):
query_embedding = encoder.encode([query])
distances, indices = index.search(query_embedding, k)
return [documents[i] for i in indices[0]]
# 示例
results = retrieve("如何提高RAG的准确性?")
print("相关文档:", results[:2])
阶段3:上下文构建与生成
代码示例:调用LLM生成
Python
from transformers import pipeline
generator = pipeline("text-generation", model="gpt2")
def rag_generate(query):
contexts = retrieve(query)
prompt = f"基于以下信息回答问题:\n{contexts}\n\n问题:{query}\n答案:"
return generator(prompt, max_length=500)[0]['generated_text']
# 执行
answer = rag_generate("RAG有哪些优化方法?")
print(answer)
3.3 高级优化策略
-
检索增强:
-
HyDE:先用LLM生成假设答案,再检索相关文档
-
Rerank:用交叉编码器(cross-encoder)对初筛结果重排序
-
-
生成控制:
-
引用标注:在生成文本中标记参考来源
-
置信度过滤:丢弃低质量检索结果
-
代码示例:HyDE优化实现
Python
def hyde_retrieve(query):
# 生成假设答案
hypo_answer = generator(f"假设答案:{query}", max_length=100)[0]['generated_text']
# 基于假设答案检索
return retrieve(hypo_answer)
注:本文代码需安装以下依赖:
Bash
pip install sentence-transformers faiss-cpu transformers
学习书籍文档
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
学习视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
项目实战源码
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取