预训练模型与迁移学习全解析:从理论到实战的大模型开发指南

一. 预训练模型(PTM)核心概念

1.1 什么是预训练模型?

预训练模型(Pre-trained Model, PTM)是在大规模通用数据上预先训练的模型,通过自监督学习掌握基础语义理解能力,可迁移到下游任务。典型代表:

  • BERT(双向Transformer):文本掩码预测

  • GPT(自回归Transformer):文本生成

  • ViT(Vision Transformer):图像分类

技术价值

  • 知识蒸馏:从海量数据中提取通用模式

  • 迁移潜能:参数携带跨任务可复用知识

be1f91a7fa329f3c90461b95d121647.png

二. 迁移学习(Transfer Learning)技术解析

2.1 迁移学习范式

Markup

源领域(大数据) → 知识迁移 → 目标领域(小数据)

典型场景

  • 跨任务迁移:BERT用于情感分析/命名实体识别

  • 跨模态迁移:CLIP实现图文互搜

2.2 与传统学习的对比

image.png

三. 为什么需要预训练?

3.1 传统方法的局限

  • 数据依赖:标注成本高(如医学图像标注需专家参与)

  • 冷启动难题:小数据集易过拟合

  • 知识孤立:每个任务独立建模,无法复用

3.2 预训练的核心优势

  • 参数效率:ImageNet预训练的ResNet在CIFAR-10仅需微调1%参数即可达90%+准确率

  • 知识泛化:GPT-3通过提示工程(Prompting)实现零样本学习

  • image.png

四. 预训练模型的下游任务适配策略

4.1 特征提取器固定(Feature Extraction)

冻结PTM参数,仅训练顶层分类器:
代码示例:BERT固定特征提取

Python

from transformers import BertModel, BertTokenizer  
import torch  
# 加载预训练模型  
model = BertModel.from_pretrained("bert-base-uncased")  
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")  
# 冻结参数  
for param in model.parameters():  
    param.requires_grad = False  
# 提取特征  
inputs = tokenizer("Hello world!", return_tensors="pt")  
outputs = model(**inputs)  
features = outputs.last_hidden_state[:, 0, :]  # 取[CLS]向量  
# 添加分类层  
classifier = torch.nn.Linear(768, 2)  
logits = classifier(features)

4.2 微调(Fine-Tuning)

解冻全部或部分参数进行端到端训练:
代码示例:GPT-2微调

Python

from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments  
model = GPT2LMHeadModel.from_pretrained("gpt2")  
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")  
# 准备训练数据  
train_texts = ["AI is changing...", "Machine learning..."]  
train_encodings = tokenizer(train_texts, truncation=True, padding=True)  
# 微调配置  
training_args = TrainingArguments(  
    output_dir='./results',  
    num_train_epochs=3,  
    per_device_train_batch_size=4,  
    learning_rate=5e-5  
)  
trainer = Trainer(  
    model=model,  
    args=training_args,  
    train_dataset=train_encodings  
)  
trainer.train()

4.3 参数高效微调(PEFT)

  • LoRA:低秩矩阵注入

  • Adapter:插入小型适配模块

  • Prefix-Tuning:优化提示向量

五. NLP预训练为何滞后于CV?

5.1 历史瓶颈分析

image.png

5.2 突破关键

  • Transformer架构:自注意力机制解决长程依赖

  • 无监督目标:MLM(掩码语言建模)实现双向编码

  • 大规模语料:Common Crawl等数据集提供万亿级token

 学习书籍文档

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

学习视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。

在这里插入图片描述

项目实战源码

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

图片

:本文代码需安装以下依赖:

Bash

pip install transformers torch datasets

更多AI大模型应用开发学习内容,尽在聚客AI学院

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值