「题解」琪露诺数
题目
【题目背景】
琪露诺是住在雾之湖的冰之妖精,在幻想乡的妖精当中算是最强的。同时她也是幻想乡首屈一指的数学家,有自己的算术教室。她喜欢用九进制来表示数字,因为这样数字中就不含 9 9 9了。
【题目描述】
对于一个十进制数 X X X,它在九进制下表示为 Y Y Y,如果 Y Y Y是一个回文数字,那么我们称 X X X是一个琪露诺数。请你找出 [ L , R ] [L,R] [L,R]中有多少个琪露诺数。
【输入格式】
第一行一个非负整数 T T T,表示询问的个数。
接下来 T T T行,每行两个正整数 L L L和 R R R,表示该组询问对应的范围 [ L , R ] [L,R] [L,R]。
【输出格式】
对于每个询问,输出一个整数,表示 [ L , R ] [L,R] [L,R]中琪露诺数的个数。
【样例输入】
样例输入1
1
1 10
样例输入2
4
1 100
1 1000
1 10000
18 19
【样例输出】
样例输出1
9
样例输出2
19
92
203
0
【数据范围】
对于样例1:[1,10]中有以下琪露诺数:1、2、3、4、5、6、7、8、10,他们在九进制下分别表示为1、2、3、4、5、6、7、8、11。
对于30%的数据,R≤10000
对于40%的数据,R≤10^12
对于50%的数据,R≤10^30
对于100%的数据,R≤10^100,T≤20,1≤L≤R
【提示】
对于任何一种进制—— X X X进制,就表示每一位置上的数运算时都是逢 X X X进位。十进制是逢 10 10 10进位,十六进制是逢 16 16 16进位,二进制就是逢 2 2 2进位,以此类推, X X X进制就是逢 X X X进位。同一个数在不同进制下可能会表示成不同的样子,比如十进制数 13 13 13在二进制下表示为 1101 1101 1101,在九进制下表示为 14 14 14。
回文数字的定义如下:最高位的数字等于最低位的数字,次高位的数字等于次低位的数字……以此类推。比如: 22 22 22,、 313 313 313、 6 6 6等都是回文数字,而 12 12 12、 321 321 321等不是回文数字。特别的,回文数字不考虑前导 0 0 0,所以 20 20 20、 110 110 110不是回文数字,而 0 0 0是回文数字。
题解
一道比较简单的高精度题(虽然我在考试的时候没做出来)
我们先把问题用差分转化成区间 [ 1 , R ] [1,R] [1,R]内的数量减区间 [ 1 , L − 1 ] [1,L-1] [1,L−1]内的数量。
注意, L − 1 L-1 L−1可能为 0 0 0,此时需要特判。
然后问题就转化为求区间 [ 1 , X ] [1,X] [1,X]内的数量。
我们可以很快的求出九进制下小于等于某个数的最大回文数字,方法如下:
考虑这个九进制数的前半部分不变
如果构造后半部分的话,会不会比当前大,如果不会那么构造出来的就是小于等于这个数的最大回文数字
否则把前半部分看成一个数进行减 1 1 1操作,再重新构造
注意这个过程中可能会发生位数的变化,所以我们先把 X X X转化为九进制数 Y Y Y,求出九进制下小于等于 Y Y Y的最大回文数字 Z Z Z,再把 Z Z Z转化回十进制数
实现中涉及高精度的进制转换和加减法。时间复杂度 O ( T ∗ l e n 2 ) O(T*len^2) O(T∗len2)。
注意,回文数分为长度为奇数和长度为偶数两种情况,涉及构造后半部分的不同。
CODE 我知道你们只看这个
1 #include<bits/stdc++.h>
2 using namespace std;
3 inline int qread(){
4 #define cg (c=getchar())
5 int x,f=1;char c;
6 while(cg<'0'||'9'<c)if(c=='-')f=-1;
7 for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
8 return x*f;
9 #undef cg
10 }
11 template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
12 const int MAXL=200;
13 int T;
14 string l,r,c;
15 string add(const string x,const string y){
16 int a[MAXL+5]={},b[MAXL+5]={},len;
17 for(int i=0,siz=x.size();i<siz;++i)a[siz-i]=x[i]^48;
18 for(int i=0,siz=y.size();i<siz;++i)b[siz-i]=y[i]^48;
19 len=Max(x.size(),y.size());
20 for(int i=1;i<=len;++i)a[i]+=b[i],a[i+1]+=a[i]/10,a[i]%=10;
21 if(a[len+1])++len;
22 string ret;ret.clear();
23 for(int i=len;i>=1;--i)ret+=a[i]^48;
24 return ret;
25 }
26 string sub(const string x,const string y){
27 int a[MAXL+5]={},b[MAXL+5]={},len;
28 for(int i=0,siz=x.size();i<siz;++i)a[siz-i]=x[i]^48;
29 for(int i=0,siz=y.size();i<siz;++i)b[siz-i]=y[i]^48;
30 len=Max(x.size(),y.size());
31 for(int i=1;i<=len;++i){
32 a[i]-=b[i];
33 if(a[i]<0)a[i]+=10,--a[i+1];
34 }
35 while(a[len]==0&&len>1)--len;
36 string ret;ret.clear();
37 for(int i=len;i>=1;--i)ret+=a[i]^48;
38 return ret;
39 }
40 bool zero(const string x){
41 for(int i=0,siz=x.size();i<siz;++i)if(x[i]!='0')
42 return false;
43 return true;
44 }
45 string trans(string x,int n,int m){
46 if(zero(x))return "0";
47 string res,ret;res.clear(),ret.clear();
48 // cout<<"This is transform:x=="<<x<<";n=="<<n<<";m=="<<m<<endl;
49 while(!zero(x)){
50 int r=0;
51 for(int i=0,siz=x.size();i<siz;++i){
52 res+=(((r*n+x[i]-'0'))/m)+'0';
53 r=(r*n+x[i]-'0')%m;
54 }
55 x=res;
56 res.clear();
57 ret+=r+'0';
58 }
59 reverse(ret.begin(),ret.end());
60 return ret;
61 }
62 string palin(const string x){
63 if(zero(x))return "0";
64 // cout<<"come in!"<<endl;
65 bool flg=false;
66 for(int len=x.size(),i=(len-1)>>1;i>=0;--i){
67 if(x[i]==x[len-i-1])continue;
68 if(x[i]>x[len-i-1]){flg=true;break;}
69 else{flg=false;break;}
70 }
71 string a,b;a.clear(),b.clear();
72 for(int i=0,len=x.size();i<(len+1)>>1;++i)a+=x[i];
73 for(int i=0,len=x.size();i<len>>1;++i)b+='8';
74 a=trans(a,9,10);
75 if(flg)a=sub(a,"1");
76 // cout<<a<<' '<<b<<endl;
77 return add(a,trans(b,9,10));
78 }
79 signed main(){
80 T=qread();
81 while(T--){
82 cin>>l>>r;
83 l=sub(l,"1");
84 l=trans(l,10,9);
85 r=trans(r,10,9);
86 cout<<sub(palin(r),palin(l))<<endl;
87 }
88 return 0;
89 }
放心食用!