Pandas基本操作

本文来源:https://www.cnblogs.com/nxld/p/6756492.html

生成数据表

  • 首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:
import numpy as np
import pandas as pd
  • 导入CSV或者xlsx文件:
df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))
  • 用pandas创建数据表:
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], 
 "date":pd.date_range('20130102', periods=6),
  "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
 "age":[23,44,54,32,34,32],
 "category":['100-A','100-B','110-A','110-C','210-A','130-F'],
  "price":[1200,np.nan,2133,5433,np.nan,4432]},
  columns =['id','date','city','category','age','price'])

数据表信息查看

序号函数作用
1df.shape查看df的维度
2df.info查看df基本信息(维度、列名称、数据格式、所占空间等)
3df.dtypes查看df每一列的数据格式
4df[‘B’].dtypes查看df中列名为“B”列的数据格式
5df.isnull查找df中所有的空值
6df["B"].isnull查找df中某一列中所有的空值
7df["B"].unique查看df中某一列的唯一值
8df.value查看df的值
9df.columns查看df的列名称
10df.index查看df的索引
11df.head()查看df前10行的数据
12df.tail()查看df后10行的数据

数据表清洗

序号函数作用
1df.fillna(value = 0)用数字0填充df中的空值
2df[“price”].fillna(df["price"].mean())用price列的平均值填充df中price列的空值
3df[“city”] = df["city"].map(str.strip)清除city列中的空格
4df[“city”] = df["city"].str.lower()大写转小写
5df[“price”].astype("int")更改数据格式
6df.rename(columns={"category": "category-size"})更改列名称
7df["city"].drop_duplicates(keep='last')删除先出现的重复值
8df["city"].replace("sh", "shanghai"数据替换

数据预处理

  • 创建Dataframe
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008], 
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})

在这里插入图片描述

  • 数据表合并
df_inner=pd.merge(df,df1,how='inner')  # 匹配合并,交集

在这里插入图片描述

df_left=pd.merge(df,df1,how='left')        #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer')  #并集
  • 将某列设置为索引
df_inner.set_index("id")

在这里插入图片描述

  • 按照特定列的值排序
df_inner.sort_values(by=['age'])

在这里插入图片描述

  • 按照索引列排序
df_inner.sort_index()

在这里插入图片描述

  • 如果price列的值>3000,group列显示high,否则显示low
    python中使用where函数完成数据分组。Where函数用来对数据进行判断和分组,下面的代码中我们对price列的值进行判断,将符合条件的分为一组,不符合条件的分为另一组,并使用group字段进行标记。
df_inner['group'] = np.where(df_inner['price'] > 3000, 'high', 'low')

在这里插入图片描述

  • 如果price列的值>3000,group列显示high,否则显示low
df_inner['group'] = np.where(df_inner['price'] > 3000, 'high', 'low')
  • 对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size'])

在这里插入图片描述

数据提取

主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。

  • 按索引提取单行的数据
df_inner.loc[3]
  • 按索引提取区域行数据
df_inner.iloc[0:5]
  • 重设索引
df_inner.reset_index()
  • 设置日期为索引
df_inner = df_inner.set_index('date')
  • 提取4日之前的所有数据
df_inner[:'2013-01-04']
  • 使用iloc按位置区域提取数据
df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。
  • 适应iloc按位置单独提起数据
df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列
  • 使用ix按索引标签和位置混合提取数据
df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据
  • 判断city列的值是否为北京
df_inner['city'].isin(['beijing'])
  • 判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来
df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])] 
  • 提取前三个字符,并生成数据表
pd.DataFrame(category.str[:3])

在这里插入图片描述

标题数据筛选

使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。

  • 使用“与”进行筛选
df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]
  • 使用“或”进行筛选
df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age']) 
  • 使用“非”条件进行筛选
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']) 
  • 对筛选后的数据按city列进行计数
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()
  • 使用query函数进行筛选
df_inner.query('city == ["beijing", "shanghai"]')
  • 对筛选后的结果按prince进行求和
df_inner.query('city == ["beijing", "shanghai"]').price.sum()

数据汇总

主要函数是groupby和pivote_table

  • 对所有的列进行计数汇总
df_inner.groupby('city').count()
  • 按城市对id字段进行计数
df_inner.groupby('city')['id'].count()
  • 对两个字段进行汇总计数
df_inner.groupby(['city','size'])['id'].count()
  • 对city字段进行汇总,并分别计算prince的合计和均值
df_inner.groupby('city')['price'].agg([len,np.sum, np.mean]) 

数据统计

数据采样,计算标准差,协方差和相关系数

  • 简单的数据采样
df_inner.sample(n=3) 
  • 手动设置采样权重
weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights) 
  • 采样后不放回
df_inner.sample(n=6, replace=False) 
  • 采样后放回
df_inner.sample(n=6, replace=True)
  • 数据表描述性统计
df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置
  • 计算列的标准差
df_inner['price'].std()
  • 计算两个字段间的协方差
df_inner['price'].cov(df_inner['m-point']) 
  • 数据表中所有字段间的协方差
df_inner.cov()
  • 两个字段的相关性分析
df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关
  • 数据表的相关性分析
df_inner.corr()

数据输出

分析后的数据可以输出为xlsx格式和csv格式

  • 写入Excel
df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc') 
  • 写入到CSV
df_inner.to_csv('excel_to_python.csv') 
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页