/*
最大和
描述
给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,
使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:
9 2
-4 1
-1 8
其元素总和为15。
输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
输出矩阵的最大子矩阵的元素之和。
样例输入
1
4 4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
样例输出
15
问题分析:
若用暴力破解,仅仅是遍历所有子矩阵所需时间复杂度都达到了O(n^4),再加上计算子矩阵和的时间复杂度O(n^2),
总计时间复杂度达到O(n^6) 显然不现实。因此可将问题转换为求解 最大子段和 问题。
动规:
1、求矩阵从第i行到第j行各列的和(把二维子矩阵压缩成一个一位数组)
2、对压缩后的一维数组进行 最大字段和求解,
3、最后得出整个程序的解
*/
#include <iostream>
using namespace std;
int SubMaxSum(int Temp[],int n) // 求最大子序列和
{
int i,b,Sum;
b=0;
Sum = Temp[0];
for(i=0;i<n;i++) // 列相加
{
if(b>0)
b += Temp[i];
else
b = Temp[i];
if(b>Sum)
{
Sum = b;
}
}
return Sum;
}
int main()
{
int n;
cin>>n;
if(n<=0 || n>100) return 0;
int r,c,i,j,k,SubMax,ExMax; // r为行 c为列 i,j,k为循环变量 SubMax为行相加后的最大值 ExMax为最终的最大值
int Temp[100],Array[100][100]; // Temp数组存储行相加的数值 Array数组存储整个矩阵
while(n)
{
ExMax = -9999999999;
cin>>r>>c;
if(r<=0 || r>100) return 0;
if(c<=0 || c>100) return 0;
for(i=0;i<r;i++) // 输入矩阵
for(j=0;j<c;j++)
cin>>Array[i][j];
for(i=0;i<r;i++)
{
for(k=0;k<c;k++) // 初始化
Temp[k] = 0;
for(j=i;j<r;j++) // 把第i行到第j行相加,对每一次相加求最大值
{
for(k=0;k<c;k++)
{
Temp[k] += Array[j][k]; // 行相加
}
SubMax = SubMaxSum(Temp,k); // k即为c列数
if(SubMax > ExMax)
{
ExMax = SubMax;
}
}
}
cout<<ExMax<<endl; // 输出
n--;
}
}
Exercise(5):最大子矩阵
最新推荐文章于 2018-10-20 17:17:09 发布