/*
题目描述 Description
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入描述 Input Description
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出描述 Output Description
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘
样例输入 Sample Input
4
9 8 17 6
样例输出 Sample Output
3
数据范围及提示 Data Size & Hint
e
问题分析:
审题“纸牌总数必为 N 的倍数 ” 得出均分之后 每堆牌数 = 总牌数 / N
通过 把每堆牌数都减去 目标牌数得到一串带正带负的数组 :
1、正则表示需要将牌向分给下一堆牌;
2、负则表示需要从下一堆牌中取牌;
3、零则表示该牌堆已分好;
*/
/* 称 均分后每堆牌的牌数 为 目标牌数 */
#include <iostream>
using namespace std;
int main()
{
int i,n,sum,ave,cc; // i为循环变量 n为牌堆数 sum为总牌数 ave为目标牌数 cc为移动次数
int arr[100]; // 存储每堆牌的初始牌数
cin>>n;
if(n<1 || n>100) return -1;
// 初始化
sum = 0;
ave = 0;
cc = 0;
for(i=0; i<n; i++) // 输入
{
cin>>arr[i];
sum+=arr[i];
}
ave = sum/n; // 得出均分后每堆牌数
for(i=0; i<n; i++) // 计算
{
arr[i] -= ave; // 每堆牌数减去目标牌数 得到一值
if(arr[i]!=0) // 判断是否为0,不是则将当前得到的值加入到下一堆牌中,移动步数加1
{
cc++;
arr[i+1] += arr[i];
}
}
cout<<cc<<endl; // 输出结果
return 0;
}
Exercise(12):纸牌均分
最新推荐文章于 2024-08-22 13:40:09 发布