Exercise(12):纸牌均分

/*
        题目描述 Description

    有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
      移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
      现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。 

      例如 N=4,4 堆纸牌数分别为:
      ① 9 ② 8 ③ 17 ④ 6
      移动3次可达到目的:
      从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
    输入描述 Input Description

    第一行N(N 堆纸牌,1 <= N <= 100)
    第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
    输出描述 Output Description

    输出至屏幕。格式为:
    所有堆均达到相等时的最少移动次数。‘
    样例输入 Sample Input

    4
    9 8 17 6
    样例输出 Sample Output

    3
    数据范围及提示 Data Size & Hint

    e

    问题分析:
        审题“纸牌总数必为 N 的倍数 ” 得出均分之后 每堆牌数 = 总牌数 / N
        通过 把每堆牌数都减去 目标牌数得到一串带正带负的数组 :
        1、正则表示需要将牌向分给下一堆牌;
        2、负则表示需要从下一堆牌中取牌;
        3、零则表示该牌堆已分好;

*/
/* 称 均分后每堆牌的牌数 为 目标牌数 */
#include <iostream>
using namespace std;

int main()
{
    int i,n,sum,ave,cc;             // i为循环变量 n为牌堆数 sum为总牌数 ave为目标牌数 cc为移动次数 
    int arr[100];                   // 存储每堆牌的初始牌数 

    cin>>n;
    if(n<1 || n>100) return -1;
                                    // 初始化 
    sum = 0;
    ave = 0;
    cc = 0;
    for(i=0; i<n; i++)              // 输入 
    {
        cin>>arr[i];
        sum+=arr[i];
    }

    ave = sum/n;                    // 得出均分后每堆牌数 

    for(i=0; i<n; i++)              // 计算 
    {
        arr[i] -= ave;              // 每堆牌数减去目标牌数 得到一值 
        if(arr[i]!=0)               // 判断是否为0,不是则将当前得到的值加入到下一堆牌中,移动步数加1 
        {
            cc++;
            arr[i+1] += arr[i];
        }
    }
    cout<<cc<<endl;                 // 输出结果 
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值