Madala_
码龄8年
关注
提问 私信
  • 博客:6,193
    6,193
    总访问量
  • 5
    原创
  • 455,415
    排名
  • 0
    粉丝
  • 0
    铁粉

个人简介:很多问题不见得会出在你身上,但你亦需要想法解决问题,否则就会变成你的问题

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-07-17
博客简介:

Madala_的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得0次评论
  • 获得9次收藏
创作历程
  • 5篇
    2019年
成就勋章
TA的专栏
  • 毕业设计
  • Elasticsearch基础篇
    5篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

相关性算法--Elasticsearch相关性算法

Elasticsearch相关性算法Elasticsearch相关性算法主要分为三大部分:布尔模型,TF/IDF,向量空间模型布尔模型:and,or,not根据这些条件来匹配文档,判断搜索词是否在文档中。TF/IDF:相关性算法--TF/IDF 这篇文章里已经介绍了相关内容,计算词频的一种方法。空间向量模型:每个词的在文档的集合中都有自己的权重,比如词A的权重为2,词B的权重为5,...
原创
发布博客 2019.07.23 ·
2742 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

相关性算法--BM25

相关性算法--BM25BM25是计算词对于文档相关性的算法,可以简单的拆解为3个部分第一部分:IDF(逆向文档频率),之前我们说过TF/IDF算法的时候讲过 IDF,IDF就是指集合中的总文档数 / 包含搜索词的文档数,包含这个词的文档数越少,就越能体现这个词的代表性,相关度就越高。第二部分:TF(词频),在TF/IDF中我们也谈到了,当一个词在文档中出现的次数越多,就代表这个词在文章...
原创
发布博客 2019.07.23 ·
1048 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

相关性算法TF/IDF

TF/IDF算法简称词频/逆向文档频率例子:文档1:我爱你中国,亲爱的母亲。(我爱你 中国 亲爱的 母亲)文档2:中国的复兴梦。(中国复兴 梦)文档3:热爱祖国,热爱人民(热爱 祖国 人民)TF(词频):一个词在文档中出现的频率,比如搜索 ‘中国’ 一词,在文档一中出现的次数为1词,我们可以简单的把词频看作是1,‘热爱’ 在文档3中出现的频率就为2。IDF(逆向文档频率)...
原创
发布博客 2019.07.23 ·
853 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Elasticsearch--集群,节点,索引,分片

这一篇主要介绍下Elasticsearch的基础概念信息,分别是集群,节点,分片。什么是集群?集群呢,顾名思义,就是一个大的集合,这个集合里面包含很多基友相同属性的元素。对于Elasticsearch来说,一个集群就是多个Elasticsearch实例的集合。每个实例可以通过集群名和ip配置互相发现,在同一集群下的所有实例就构成了一个Elasticsearch集群,单个实例也可以构成一个集...
原创
发布博客 2019.07.03 ·
1230 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

Elasticsearch--倒排索引

​Elasticsearch--倒排索引什么是倒排索引?例如,mysql中有数据表user,表中含有两个字段,主键userId,和姓名userName。user表 userId userName 1000 小明 1001 小强 由于userId是主键,在数据量巨大的情况下我们可以通过主键索引快速的找到某一个userId下的userName。反之想要通过u...
原创
发布博客 2019.06.25 ·
313 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏