qplot()函数的详细用法

From http://www.douban.com/note/210758237/?type=like

参考文献:Hadley Wickham《ggplot2: Elegant Graphics for Data Analysis》第二章




# 测试数据集,ggplot2内置的钻石数据
qplot(carat, price, data = diamonds)
dsmall <- diamonds[sample(nrow(diamonds), 100), ] #对diamonds数据集进行抽样

#1. 按color,size,shape的基本分类可视化

#1.1 简单的散点图(利用color分类,不同颜色的钻石由不同颜色的点代表)
qplot(carat, price, data = dsmall, colour = color)
 


#1.2. 简单的散点图(利用shape分类,不同的切割方式由不同形状的点代表)
qplot(carat, price, data = dsmall, shape = cut)
 


#2. 绘制不同类型的图表:geom参数

qplot(x,y,data=data,geom="")中的geom=""用来控制输出的图形类型
I. 两变量图
(1) geom="points",默认参数,绘制散点图(x,y)
(2) geom="smooth" 绘制平滑曲线(基于loess, gam, lm ,rlm,glm)
(3) geom="boxplot" 绘制箱线图 ,当x为属性变量(factor),y为数值变量时

II.单变量图
(4) geom="histogram",直方图
(5) geom="density",核密度估计图
(6) geom="bar",条形图barchart

III.时间序列
(7) geom="line",折线图,可用于时间序列(当x=date)
(8) geom="path",路径图(参见后文)


# 2.1 同时绘制散点图+平滑直线
qplot(carat, price, data = dsmall, geom=c("point","smooth"))
 


#参数调整:method=""等
#(a). method = "loess", 默认平滑算法, 通过span=调整窗宽, span=0(波动) 到 span=1(光滑)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
      method = "loess",span=0.2)
 


# (b). method = "gam": GAM 在大数据时比loess高效,需要载入 mgcv 包
library(mgcv)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
      method="gam", formula = y ~ s(x))

# (c). method="lm", 线性平滑
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
     method = "lm")

# method="lm",formula = y ~ ns(x, 3),三次自然样条,需要载入splines包
library(splines)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
      method = "lm", formula = y ~ ns(x, 3))

# method = "rlm", robust linear model, 受异常值影响小,需要载入MASS包
library(MASS)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
      method = "rlm")


# 2.2:x为属性变量,y为连续变量,绘制boxplot
qplot(color, price/carat, data=diamonds,geom="boxplot")
 


# 2.3:单变量,直方图
qplot(carat, data = diamonds, geom = "histogram")
 


#2.4: 单变量,核密度估计图
qplot(carat, data = diamonds, geom = "density")
 


# 按不同颜色绘制的density图
qplot(carat, data = diamonds, geom = "density",colour=color)
 


# 2.5 条形图(柱状图)
#计数,求count(color)
qplot(color, data = diamonds, geom = "bar")

#加权,对每个求sum(carat),类似于excel里的数据透视图,按不同的color计算carat的总和
qplot(color, data = diamonds, geom = "bar", weight = carat)
 



#2.6. Time-series
qplot(date, unemploy / pop, data = economics, geom = "line")
 



#2.7. Path plot
#如果要查看失业率(unemploy / pop)与平均失业时间(uempmed)之间的关系,一个方法是利用散点图,但是这样做就会导致无法观察到随时间变化的趋势了,path plot利用颜色深浅来代表年份,随着颜色从浅蓝变成深蓝,可以观察到失业率与失业时间的关系的变化趋势。

#具体实现:先自定义函数year(),将字符串格式的时间转化为年
year <- function(x) as.POSIXlt(x)$year + 1900

#画出path plot,颜色按年份由浅到深
qplot(unemploy / pop, uempmed, data = economics,
      geom = "path", colour = year(date))
geom_histogram函数是ggplot2包中的一个函数,用于绘制直方图。直方图是一种统计图,用于展示分布情况。此函数不需要y轴数据,只需要一个x轴数据和一个分组变量即可。下面是geom_histogram函数用法介绍。 首先,在ggplot2中收集数据需要用到全局函数qplot(),并且通常还需要引用数据包。例如: library(ggplot2) data("mpg") 然后,使用qplot()来绘制直方图。此时,我们可以使用geom_histogram()指定绘图函数,并指定美观的颜色和原色。 qplot(drunkenness, data=mpg, geom="histogram", fill=I("blue"), col=I("red")) 需要注意的是,在绘制直方图时,x值通常代表测量值,而y值通常代表测量值的频率。因此,可以使用geom_histogram()函数指定分组变量,并将y值设置为“..density..”。 qplot(drunkenness, data=mpg, geom="histogram", binwidth = 1.5, fill=I("blue"), col=I("red")+labs(title="Drunk Driving Rates Across the United States")+ylim(0,0.13))+coord_cartesian(ylim=c(0,0.2)) 在上面的代码中,“binwidth”参数是指定直方图中的柱子宽度。如果binwidth太小,则绘图将不会呈现出分布的真正形态;如果binwidth太大,则会产生误解。因此,必须根据数据分布的性质选择合适的binwidth。此外,“labs()函数用于添加标题,ylim函数用于设置y轴范围。 总体而言,geom_histogram()函数可以装载大量数据,快速地绘制具有统计价值的直方图,并可进行高度的操控,以确认数据分布特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值