文章目录
分布式文件系统
计算机集群结构
分布式文件系统把文件分布存储到多个计算机节点上,多个节点构成计算机集群。目前分布式文件系统采用的计算机集群都是由普通硬件构成,极大的降低了硬件的开销。
分布式文件系统的结构
在物理上由计算机集群中的多个节点构成,节点分为两类,一类是“主节点”,也成为名称结点,一类是“从节点”,称为数据结点
HDFS简介
HDFS主要要实现以下目标:
-
兼容廉价的硬件设备
-
流数据读写
-
大数据集
-
简单的文件模型
-
强大的跨平台性
缺陷:
- 不适合低延迟数据访问
- 无法高效存储小文件
- 不支持多用户写入及任意修改文件
HDFS相关概念
块
默认一个块64M,一个文件被分为多个块,以块做为存储单位,块的大小远远的大于普通文件系统,可以最小化寻址开销
好处:
-
支持大规模文件存储
-
简化系统设计
-
适合数据备份
名称结点和数据结点
NameNode DataNode 存储元数据 存储文件内容 元数据存储在内存中 文件存储在磁盘 保存block和datanode之间的映射关系 维护了block id到datanode本地文件的映射关系 名称结点的数据结构
名称结点负责管理分布式文件系统的命名空间,保存了两个核心的数据结构,FsImage和EditLog
-
FsImage
用于维护文件系统树以及树中文件和文件夹的元数据
-
EditLog 操作日志文件,里面记录了针对于文件的创建,删除,重命名等操作。
-
名称结点记录了每个文件中各个块所在数据结点的位置信息
FsImage文件
FsImage文件包括文件系统中所有目录和文件的inode的序列化形式。每个inode是一个文件或者目录的元数据的内部表示,并包含此类信息:文件的复制等级,修改和访问时间,访问权限,块大小以及组成文件的块。
FsImage文件中没有存储文件包含哪些块,和每个块存储在那个数据结点。而是由名称结点把这些映射信息保存在内存中,当数据结点加入HDFS集群时,数据结点会把自己包含的块列表告知给名称系欸但,此后会定期执行这些告知操作,以确保名称结点的块映射是最新的。
名称结点的启动
在启动名称结点启动的时候,他将FsImage文件中的内容加载到内存中,之后在执行EditLog文件中的各项操作,使内存中的呀u三年护具和实际的同步,存在内存中的元数据支持客户端的读操作。
一旦内存中成功建立文件系统元数据的映射,则创建一个新的FsImage文件和一个空的EditLog文件。
名称结点起来之后。HDFS中更新操作会写在EdItLog中,因为FsImage文件一般都很大,如果所有的更新操作都往FsImage中添加,这样会导致系统运行的十分缓慢,但是,如果往EditLog文件里面写就不会这样,因为EditLog要小很多。每次执行写操作之后,且在向客户端发送成功代码之前,edits文件都需要同步更新。
名称结点玉兴期间EditLog不断变大的问题
在名称结点运行期间,HDFS的所有更新操作都直接写入Editlog中,时间长了,EditLog也会变得很大,虽然在名称结点运行时没有什么影响,但是当名称结点重启的时候,名称结点需要将FsImage里面所有内容影响到内存,然后在一条一条执行EditLog中的操作,当EditLog很大时,会导致名称结点启动十分慢。
解决:
SecondaryNameNode第二名称结点。
第二名称结点,他是用来保存名称结点中对HDFS元数据信息的备份,并减少名称结点重启的时间。第二名称结点一般单独运行在一台机器上。
第二名称结点的工作情况:
- SecondaryNameNode会定期和NameNode通信,请求其停止使用EditLog文件,暂时将新的写操作写到一个新的文件edit.new上,这个操作是瞬间完成的,山城写日志的函数完全感觉不到差别
- SecondaryNameNode通过HTTPGET方式从NameNode上获取FsImage和EditLog文件,并下载到本地的相应目录下,
- SecondaryNameNode将下载的FsImage载入内存,然后一条一条的执行EditLog中的各项更新操作,使得内存中的FsImage保持最新。这个过程就是EditLog和FsImage合并
- SecondaryNameNode执行完3后会通过post方式将新的FsImage发送到NameNode上
- NameNode将从SecondaryNameNode接受到的新的FsImage替换旧的FsImge文件,同时将edit.new替换EditLog文件,通过这个方式就解决了EditLog不断变大问题
数据结点
数据结点时分布式文件系统HDFS的工作借idan,负责数据的存储和读取,会根据客户端或者名称系欸但的调度来进行数据的存储和检索,并且向名称结点定期发送自己所存储块的列表
-
HDFS体系结构
HDFS采用了主从结构模型,一个HDFS集群包括一个名称结点但和若干个数据结点。名称系欸但负责管理文件系统的命名空间以及客户端对文件的访问。集群中的数据系欸但那一般时一个接待你运行一个数据结点,负责处理文件系统客户端的读写请求,在名称节点的统一调度下进行数据块的创建、删除和复制等操作。
通信协议
•HDFS是一个部署在集群上的分布式文件系统,因此,很多数据需要通过网络进行传输
•所有的HDFS通信协议都是构建在TCP/IP协议基础之上的
•客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互
•名称节点和数据节点之间则使用数据节点协议进行交互
•客户端与数据节点的交互是通过RPC(Remote Procedure Call)来实现的。在设计上,名称节点不会主动发起RPC,而是响应来自客户端和数据节点的RPC请求
客户端
•客户端是用户操作HDFS最常用的方式,HDFS在部署时都提供了客户端
•HDFS客户端是一个库,暴露了HDFS文件系统接口,这些接口隐藏了HDFS实现中的大部分复杂性
•严格来说,客户端并不算是HDFS的一部分
•客户端可以支持打开、读取、写入等常见的操作,并且提供了类似Shell的命令行方式来访问HDFS中的数据
•此外,HDFS也提供了Java API,作为应用程序访问文件系统的客户端编程接口
HDFS存储原理
冗余数据保存
为了保证系统的容错性和可用性,HDFS采用了多副本方式对数据进行冗余存储,通常一个数据块的多个副本会被分布到不同的数据节点上。
副本方式具有以下几个优点:
(1)加快数据传输速度
(2)容易检查数据错误
(3)保证数据可靠性
数据存取策略
数据存放
•第一个副本:放置在上传文件的数据节点;如果是集群外提交,则随机挑选一台磁盘不太满、CPU不太忙的节点
•第二个副本:放置在与第一个副本不同的机架的节点上
•第三个副本:与第一个副本相同机架的其他节点上
•更多副本:随机节点
2. 数据读取
•HDFS提供了一个API可以确定一个数据节点所属的机架ID,客户端也可以调用API获取自己所属的机架ID
•当客户端读取数据时,从名称节点获得数据块不同副本的存放位置列表,列表中包含了副本所在的数据节点,可以调用API来确定客户端和这些数据节点所属的机架ID,当发现某个数据块副本对应的机架ID和客户端对应的机架ID相同时,就优先选择该副本读取数据,如果没有发现,就随机选择一个副本读取数据
数据错误和恢复
HDFS具有较高的容错性,可以兼容廉价的硬件,它把硬件出错看作一种常态,而不是异常,并设计了相应的机制检测数据错误和进行自动恢复,主要包括以下几种情形:名称节点出错、数据节点出错和数据出错。
1. 名称节点出错
名称节点保存了所有的元数据信息,其中,最核心的两大数据结构是FsImage和Editlog,如果这两个文件发生损坏,那么整个HDFS实例将失效。因此,HDFS设置了备份机制,把这些核心文件同步复制到备份服务器SecondaryNameNode上。当名称节点出错时,就可以根据备份服务器SecondaryNameNode中的FsImage和Editlog数据进行恢复。
2. 数据节点出错
•每个数据节点会定期向名称节点发送“心跳”信息,向名称节点报告自己的状态
•当数据节点发生故障,或者网络发生断网时,名称节点就无法收到来自一些数据节点的心跳信息,这时,这些数据节点就会被标记为“宕机”,节点上面的所有数据都会被标记为“不可读”,名称节点不会再给它们发送任何I/O请求
•这时,有可能出现一种情形,即由于一些数据节点的不可用,会导致一些数据块的副本数量小于冗余因子
•名称节点会定期检查这种情况,一旦发现某个数据块的副本数量小于冗余因子,就会启动数据冗余复制,为它生成新的副本
•HDFS和其它分布式文件系统的最大区别就是可以调整冗余数据的位置
3. 数据出错
•网络传输和磁盘错误等因素,都会造成数据错误
•客户端在读取到数据后,会采用md5和sha1对数据块进行校验,以确定读取到正确的数据
•在文件被创建时,客户端就会对每一个文件块进行信息摘录,并把这些信息写入到同一个路径的隐藏文件里面
•当客户端读取文件的时候,会先读取该信息文件,然后,利用该信息文件对每个读取的数据块进行校验,如果校验出错,客户端就会请求到另外一个数据节点读取该文件块,并且向名称节点报告这个文件块有错误,名称节点会定期检查并且重新复制这个块
HDFS读写过程
读
import java.io.BufferedReader;
import java.io.InputStreamReader;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.FSDataInputStream;
public class Chapter3 {
public static void main(String[] args) {
try {
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
Path file = new Path("test");
FSDataInputStream getIt = fs.open(file);
BufferedReader d = new BufferedReader(new InputStreamReader(getIt));
String content = d.readLine(); //读取文件一行
System.out.println(content);
d.close(); //关闭文件
fs.close(); //关闭hdfs
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
写
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
public class Chapter3 {
public static void main(String[] args) {
try {
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
byte[] buff = "Hello world".getBytes(); // 要写入的内容
String filename = "test"; //要写入的文件名
FSDataOutputStream os = fs.create(new Path(filename));
os.write(buff,0,buff.length);
System.out.println("Create:"+ filename);
os.close();
fs.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
•FileSystem是一个通用文件系统的抽象基类,可以被分布式文件系统继承,所有可能使用Hadoop文件系统的代码,都要使用这个类
•Hadoop为FileSystem这个抽象类提供了多种具体实现
•DistributedFileSystem就是FileSystem在HDFS文件系统中的具体实现
•FileSystem的open()方法返回的是一个输入流FSDataInputStream对象,在HDFS文件系统中,具体的输入流就是DFSInputStream;FileSystem中的create()方法返回的是一个输出流FSDataOutputStream对象,在HDFS文件系统中,具体的输出流就是DFSOutputStream。