题目地址(497. 非重叠矩形中的随机点)
https://leetcode.cn/problems/random-point-in-non-overlapping-rectangles/
题目描述
给定一个由非重叠的轴对齐矩形的数组 rects ,其中 rects[i] = [ai, bi, xi, yi] 表示 (ai, bi) 是第 i 个矩形的左下角点,(xi, yi) 是第 i 个矩形的右上角点。设计一个算法来随机挑选一个被某一矩形覆盖的整数点。矩形周长上的点也算做是被矩形覆盖。所有满足要求的点必须等概率被返回。
在给定的矩形覆盖的空间内的任何整数点都有可能被返回。
请注意 ,整数点是具有整数坐标的点。
实现 Solution 类:
Solution(int[][] rects) 用给定的矩形数组 rects 初始化对象。
int[] pick() 返回一个随机的整数点 [u, v] 在给定的矩形所覆盖的空间内。
示例 1:
输入:
["Solution", "pick", "pick", "pick", "pick", "pick"]
[[[[-2, -2, 1, 1], [2, 2, 4, 6]]], [], [], [], [], []]
输出:
[null, [1, -2], [1, -1], [-1, -2], [-2, -2], [0, 0]]
解释:
Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]);
solution.pick(); // 返回 [1, -2]
solution.pick(); // 返回 [1, -1]
solution.pick(); // 返回 [-1, -2]
solution.pick(); // 返回 [-2, -2]
solution.pick(); // 返回 [0, 0]
提示:
1 <= rects.length <= 100
rects[i].length == 4
-109 <= ai < xi <= 109
-109 <= bi < yi <= 109
xi - ai <= 2000
yi - bi <= 2000
所有的矩形不重叠。
pick 最多被调用 104 次。
前置知识
- 前缀和+二分查找
思路
设n为矩形个数
直观想法,先在[0, n - 1]下标之间随机取一个矩形,然后再在该矩形中随机去一个点。矩形中随机取点可以在长和宽的范围上随机取一个值,对应出一个二维坐标就是该点。但是先在[0, n - 1]下标之间随机取一个矩形,不满足题目要求的等概率分布;下面是非严谨的数学的证明,因为面积大的矩形和面积的小的矩形概率被取到的概率都是1/n, 那对于大矩形来说平均到各个点的概率就要比小矩形的概率要小,不满足各个点等概率的要求。
因此每个矩形的被选到的概率不应该是1/n,应该按照每个矩形包含点的占比作为权重,这样后续平均到每个点的概率才相同;
因此可以预处理出每个矩形包含多少点,根据概率的几何模型,我们把包含x个点的矩形看作长度为x的线段,那么每个矩形的概率占比可以用下图表示。
根据几何模型,每条线段占总长度的比例就是每个矩形被抽中的概率。我们预处理出前缀和数组,其中
s
u
m
[
i
]
sum[i]
sum[i]代表前
i
i
i个矩形的点数之和(即下标范围
[
0
,
i
−
1
]
[0, i - 1]
[0,i−1]的点总和), 这样就与图上一维坐标一一对应。之后可以在
[
1
,
s
u
m
[
n
]
]
[1, sum[n]]
[1,sum[n]] 范围内随机去一个点,看看这个点具体落在那个矩形对应的线段上,当前矩形就是被抽中的矩形。由于前缀
s
u
m
sum
sum数组的具有单调性,进行二分查找,该随机点落在那个矩形上。之后在该矩形中进行随机,得到最终的随机点。
关键点
- 按照每个矩形的包含点数目的占比作为概率权重进行抽样
代码
- 语言支持:C++, Java
C++ Code:
class Solution {
public:
vector<vector<int>> rects; // 备份(用作后续在矩形内查找点的)
vector<int> sum; // 前缀和数组
int n;
Solution(vector<vector<int>>& _rects) {
rects = _rects;
sum.push_back(0);
n = rects.size();
for(int i = 0; i < n; i ++)
{
int px = rects[i][2] - rects[i][0] + 1; // 该矩形横坐标包含的点数
int py = rects[i][3] - rects[i][1] + 1; // 该举行纵坐标包含的点数
sum.push_back(sum.back() + px * py); // 前缀和累加
}
}
vector<int> pick() {
int l = 1, r = n;
int v = rand() % sum.back() + 1;
while(l < r) // 二分查找出小于等于随机值v的最后一个矩形
{
int mid = (l + r) >> 1;
if(sum[mid] >= v) r = mid;
else l = mid + 1;
}
int idx = --l;
int x = rects[idx][2] - rects[idx][0] + 1; // 矩形横坐标的长度
int y = rects[idx][3] - rects[idx][1] + 1; // 矩形纵坐标的长度
int dx = rand() % x; // 随机截取一段x
int dy = rand() % y; // 随机截取一段y
return {rects[idx][0] + dx, rects[idx][1] + dy};
}
};
Java Code:
class Solution {
int[][] rects;
List<Integer> sum = new ArrayList();
int n;
public Solution(int[][] _rects) {
n = _rects.length;
rects = _rects;
sum.add(0);
for(int i = 0; i < n; i ++)
{
int px = rects[i][2] - rects[i][0] + 1;
int py = rects[i][3] - rects[i][1] + 1;
sum.add(sum.get(sum.size() - 1) + px * py);
}
}
public int[] pick() {
int l = 1, r = n;
int maxv = sum.get(sum.size() - 1);
int v = (new Random().nextInt(maxv)) + 1;
while(l < r)
{
int mid = (l + r) >> 1;
if(sum.get(mid) >= v) r = mid;
else l = mid + 1;
}
int idx = --l;
int x = rects[idx][2] - rects[idx][0] + 1;
int y = rects[idx][3] - rects[idx][1] + 1;
int dx = new Random().nextInt(x);
int dy = new Random().nextInt(y);
return new int[] {rects[idx][0] + dx, rects[idx][1] + dy};
}
}
复杂度分析
令 n 为数组长度。
- 时间复杂度: O ( m l o g ( n ) ) , m 是 随 机 次 数 O(mlog(n)), m是随机次数 O(mlog(n)),m是随机次数
- 空间复杂度: O ( n ) O(n) O(n)