文章目录
数据分析三剑客之numpy
- numpy
- pandas(重点)
- matplotlib
1.numpy模块简介
- NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。
2.numpy数组的创建
- 使用np.array()创建
- 使用plt创建
- 使用np的常用函数快速创建
2.1使用np.array()创建
2.1.1使用array()创建一个一维数组
import numpy as np
arr = np.array([1,2,3])
print(arr)
print(type(arr))
out:
[1 2 3]
<class 'numpy.ndarray'>
进程已结束,退出代码为 0
2.1.2使用array()创建一个多维数组
import numpy as np
arr = np.array([[1,2,3],[4,5,6]])
print(arr)
print(type(arr))
out
[[1 2 3]
[4 5 6]]
<class 'numpy.ndarray'>
进程已结束,退出代码为 0
2.1.3数组和列表的区别是什么?
-
数组中存储的数据元素类型必须是统一类型
-
优先级:
-
字符串 > 浮点型 > 整数
-
arr = np.array([1,2.2,3]) print(arr) #out:[1. 2.2 3. ] 只要出现一个浮点型,其它的整数类型就会自动转换成浮点型
-
2.2使用plt创建
将外部的一张图片读取加载到numpy数组中,然后尝试改变数组元素的数值查看对原始图片的影响
import matplotlib.pyplot as plt
img_arr = plt.imread('./1.jpg')#返回的数组,数组中装载的就是图片内容
plt.imshow(img_arr)#将numpy数组进行可视化展示
out:

img_arr = img_arr - 100 #将每一个数组元素都减去100
plt.imshow(img_arr)
这样我们可以改变原来图片的颜色
2.3使用np的常用函数创建
快速创建数组函数
- zeros()
- ones()
- linespace()
- arange()
- random系列
2.3.1 np.zeros()
import numpy as np
arr=np.zeros(shape=(3,4))
print(arr)
out:
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
进程已结束,退出代码为 0
2.3.2 np.ones()
import numpy as np
arr=np.ones(shape=(3,4))
print(arr)
out:
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
进程已结束,退出代码为 0
2.3.3np.linespace(start,stop,num) 一维等差数列
import numpy as np
arr=np.linspace(0,100,num=20) #一维的等差数列数组
print(arr)
out:
[ 0. 5.26315789 10.52631579 15.78947368 21.05263158
26.31578947 31.57894737 36.84210526 42.10526316 47.36842105
52.63157895 57.89473684 63.15789474 68.42105263 73.68421053
78.94736842 84.21052632 89.47368421 94.73684211 100. ]
进程已结束,退出代码为 0
2.3.4np.arange(start,stop,step) 一维等差数列
arr=np.linspace(0,100,num=20) #一维的等差数列数组
print(arr)
out:
[ 0. 5.26315789 10.52631579 15.78947368 21.05263158
26.31578947 31.57894737 36.84210526 42.10526316 47.36842105
52.63157895 57.89473684 63.15789474 68.42105263 73.68421053
78.94736842 84.21052632 89.47368421 94.73684211 100. ]
进程已结束,退出代码为 0
2.3.5np.random.randint(0,100,size)
import numpy as np
arr=np.random.randint(0,100,size=(5,3))
print(arr)
out:
[[53 21 85]
[18 10 95]
[ 3 29 74]
[44 30 7]
[95 97 83]]
进程已结束,退出代码为 0
3.numpy数组的常用属性
- shape #返回的是数组的形状
- ndim #返回的是数组的维度
- size #返回数组元素的个数
- dtype 返回的是数组元素的类型
import numpy as np
arr = np.random.randint(0,100,size=(5,6))
print(arr)
print(arr.shape)
print(arr.ndim)
print(arr.size)
print(arr.dtype)
print(type(arr))
out:
[[88 48 12 1 98 40]
[12 56 18 48 26 78]
[46 52 50 51 30 72]
[99 74 56 39 91 7]
[47 41 14 14 34 62]]
(5, 6) #shape #返回的是数组的形状
2 #ndim #返回的是数组的维度
30 #size #返回数组元素的个数
int32 #dtype #返回的是数组元素的类型
<class 'numpy.ndarray'>
进程已结束,退出代码为 0
4.numpy数组的数据类型
- array(dtype=?):可以设定数据类型
- arr.dtype = ‘?’:可以修改数据类型

4.1创建数组时,可以指定元素类型
#创建一个数组,指定数组元素类型为int32
arr = np.array([1,2,3],dtype='int64')
print(arr.dtype) #int64
4.2 修改已创建的数组元素的类型节省空间
arr.dtype = 'uint8' #修改数组的元素类型
print(arr.dtype) #uint8
5. numpy的索引和切片操作(重点)
5.1 索引
- 索引操作和列表同理
5.1.1索引单行
arr[1] #取出了numpy数组中的下标为1的行数据
5.1.2索引多行
arr[[1,3,4]] #取出多行
5.2切片
- 切片操作
5.2.1切出前两列数据
#切出arr数组中的前两列
arr[:,0:2] #arr[行切片,列切片]
5.2.2切出前两行数据
#切出arr数组的前两行的数据
arr[0:2] #arr[行切片]
5.2.3切出前两行的前两列的数据
#切出前两行的前两列的数据
arr[0:2,0:2]
5.3 数组数据翻转
5.3.1行倒置:
#将数组的行倒置
arr[::-1]
5.3.2列倒置:
#将数组的列倒置
arr[:,::-1]
5.3.3所有元素都倒置:
#所有元素倒置
arr[::-1,::-1]
5.4 数组操作应用到图片
-
练习:将一张图片上下左右进行翻转操作
-
图片读出来的数组为三维:
img_arr[行,列,颜色]
- 左右翻转(列倒置)
#将一张图片进行左右翻转
img_arr = plt.imread('图片.jpg')
img_arr.shape #(300, 450, 3)
plt.imshow(img_arr)
plt.imshow(img_arr[:,::-1,:]) #img_arr[行,列,颜色]
- 上下翻转(行倒置)
#图片上下翻转
plt.imshow(img_arr[::-1,:,:])
- 练习:将图片进行指定区域的裁剪
#图片裁剪的功能
plt.imshow(img_arr[66:200,78:300,:])
6.数组变形函数reshape()
- 必须得确保变形之前和变形之后的总元素个数是相同的!
arr#是一个5行6列的二维数组
#将二维的数组变形成1维
arr_1 = arr.reshape((30,))
#将一维变形成多维
arr_1.reshape((6,5))
7. 级联操作(数组拼接) np.concatenate((arr,arr),axis=1)
-
将多个numpy数组进行横向或者纵向的拼接
-
axis轴向的理解
- 0:列
- 1:行
-
问题:
- 级联的两个数组维度一样,但是行列个数不一样会如何?
现有如下数组:
arr=[[69, 80, 7, 90, 31],
[44, 37, 57, 26, 92],
[91, 34, 13, 16, 93],
[54, 87, 34, 5, 16],
[47, 66, 51, 12, 54],
[63, 20, 11, 94, 88]]
arr1=np.concatenate((arr,arr),axis=1)
print(arr1)
out:
[[69, 80, 7, 90, 31, 44, 69, 80, 7, 90, 31, 44],
[37, 57, 26, 92, 91, 34, 37, 57, 26, 92, 91, 34],
[13, 16, 93, 54, 87, 34, 13, 16, 93, 54, 87, 34],
[ 5, 16, 47, 66, 51, 12, 5, 16, 47, 66, 51, 12],
[54, 63, 20, 11, 94, 88, 54, 63, 20, 11, 94, 88]]
图片横向拼接同理,图片也可以看作一个数组
arr_3 = np.concatenate((img_arr,img_arr,img_arr),axis=0) #纵向拼接图片
plt.imshow(arr_3)
8.常用的聚合操作
- sum,max,min,mean
准备如下数组:
arr=[[69, 80, 7, 90, 31, 44],
[37, 57, 26, 92, 91, 34],
[13, 16, 93, 54, 87, 34],
[ 5, 16, 47, 66, 51, 12],
[54, 63, 20, 11, 94, 88]]
8.1求和:(axis=1:水平,axis=0:纵向,无:全部)
arr.sum(axis=1) #array([321, 337, 297, 197, 330])
8.2求最大值(axis=1:水平,axis=0:纵向,无:全部)
arr.max(axis=1)
8.3min和mean与上方同理
9.常用的数学函数
- NumPy 提供了标准的三角函数:sin()、cos()、tan()
- numpy.around(a,decimals) 函数返回指定数字的四舍五入值。
- 参数说明:
- a: 数组
- decimals: 舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置
- 参数说明:
9.1求正弦 (sin()、cos()、tan()同理)
np.sin(2.5)
9.2求四舍五入值numpy.around(a,decimals)
np.around(3.84,2)
10.常用的统计函数
10.1 计算数组中的元素沿指定轴的最小、最大值。
- numpy.amin() 和 numpy.amax(),用于计算数组中的元素沿指定轴的最小、最大值。
- 可用max和min替代
10.2 计算数组中元素最大值与最小值的差(最大值 - 最小值)
- numpy.ptp():计算数组中元素最大值与最小值的差(最大值 - 最小值)。
10.3 用于计算数组 a 中元素的中位数(中值)
- numpy.median() 函数用于计算数组 a 中元素的中位数(中值)
10.4 计算数组的标准差
- 标准差std():标准差是一组数据平均值分散程度的一种度量。
- 公式:std = sqrt(mean((x - x.mean())**2))
- 如果数组是 [1,2,3,4],则其平均值为 2.5。 因此,差的平方是 [2.25,0.25,0.25,2.25],并且其平均值的平方根除以 4,即 sqrt(5/4) ,结果为 1.1180339887498949。
arr[1].std() #标准差
10.5 计算数组的方差
- 方差var():统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,即 mean((x - x.mean())** 2)。换句话说,标准差是方差的平方根。
arr[1].var() #方差
11 矩阵相关
- NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。一个 的矩阵是一个由行(row)列(column)元素排列成的矩形阵列。
- numpy.matlib.identity() 函数返回给定大小的单位矩阵。单位矩阵是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为 1,除此以外全都为 0
11.1单位矩阵 np.eye()
import numpy as np
print(np.eye(6))
print(type(np.eye(6)))
out
[[1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 1.]]
<class 'numpy.ndarray'>
进程已结束,退出代码为 0
11.2 矩阵转置
- 转置矩阵
- .T
arr.T
11.3矩阵相乘
-
numpy.dot(a, b, out=None)
- a : ndarray 数组
- b : ndarray 数组
-
第一个矩阵第一行的每个数字(2和1),各自乘以第二个矩阵第一列对应位置的数字(1和1),然后将乘积相加( 2 x 1 + 1 x 1),得到结果矩阵左上角的那个值3。也就是说,结果矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和。
a1 = np.array([[2,1],[4,3]])
a2 = np.array([[1,2],[1,0]])
print(np.dot(a1,a2))
out
[[3 4]
[7 8]]
进程已结束,退出代码为 0

1014

被折叠的 条评论
为什么被折叠?



